The True Efficacy & Value of LUTRONIC® Medical Devices

The true efficacy and value of medical devices, be they laser, LED or energy based devices, can be well assessed by reviewing published papers from established users and researchers. We have organized our ever-increasing collection of articles by system and application, which allows you to see at a glance what has been published. Regulatory approvals vary by geographic region. Kindly refer to www.lutronic.com for system availability and the most recent article list.
Treatment of traumatic tattoo with the Q-switched Nd:YAG laser ... 1
F Gorouhi, A Firooz et al.
Journal of Cosmetic and Laser Therapy

New melasma treatment with collimated low fluence Q-switched Nd:YAG laser 2
SY Jeong, IH Kim et al.
Korean Journal of Dermatology

Subcellular selective photothermolysis of melanosomes in adult zebrafish skin following 1064-nm Q-switched Nd:YAG laser irradiation ... 3
JH Kim, IH Kim et al.
Journal of Investigative Dermatology

Low-fluence Q-switched neodymium-doped yttrium aluminum garnet laser for melasma with pre- or post-treatment triple combination cream ... 4
SY Jeong, IH Kim et al.
Dermatologic Surgery

Effect of low fluence Q-switched 1064 nm Nd:YAG laser therapy on melasma 5
IH Kim
Aesthetic Dermatology

A low fluence Q-switched Nd:YAG laser modifies the 3D structure of melanocytes and ultrastructure of melanosomes by subcellular-selective photothermolysis 6
JY Mun, IH Kim et al.
Journal of Electron Microscopy

The dual toning technique for melasma treatment with the 1064 nm Nd:YAG laser:
A preliminary study ... 7
HY Kang, JH Kim, and BC Goo
Laser Therapy

Erythema ab igne successfully treated using 1,064-nm Q-switched neodymium-doped yttrium aluminum garnet laser with low fluence ... 8
S Cho, JY Jung, and JH Lee
Dermatologic Surgery

Low-fluence Q-switched neodymium-doped yttrium aluminum garnet laser for melasma with pre- or post-treatment triple combination cream ... 9
ZD Draelos
Dermatologic Surgery
Low-fluence Q-switched 1,064-nm neodymium-doped yttrium aluminum garnet laser for the treatment of facial partial unilateral lentiginosis in Koreans ... 10
Y Lee, EH Choi, and SW Lee
Dermatologic Surgery

Recovery of pigmentation following selective photothermolysis in adult zebrafish skin:
Clinical implications for laser toning treatment of melasma ... 11
JH Kim, IH Kim et al.
Journal of Cosmetic and Laser Therapy

Effects of various parameters of the 1064 nm Nd:YAG laser for the treatment of enlarged facial pores .. 12
MR Roh, HJ Chung, and KY Chung
Journal of Dermatological Treatment

Treatment of enlarged pores with the quasi long-pulsed versus Q-switched 1064 nm Nd:YAG lasers: A split-face, comparative, controlled study ... 13
MR Roh, KY Chung et al.
Laser Therapy

Enlarged pores treated with a combination of Q-switched and micropulsed 1064 nm Nd:YAG laser with and without topical carbon suspension: a simultaneous split-face trial 14
HJ Chung, KY Chung et al.
Laser Therapy

Histometric changes and epidermal FGF9 expression in carbon photoenhancer-assisted Nd:YAG laser treatment .. 15
Z Zheng, SB Cho et al.
Journal of Dermatological Treatment

Prospective randomized controlled clinical and histopathological study of acne vulgaris treated with dual mode of quasi-long pulse and Q-switched 1064-nm Nd:YAG laser assisted with a topically applied carbon suspension .. 16
JY Jung, DH Suh et al.
Journal of the American Academy of Dermatology
Carbon assisted Q-switched Nd:YAG laser treatment with two different sets of pulse width parameters offers a useful treatment modality for severe inflammatory acne: A case report 17
SI Chun, and RG Calderhead
Photomedicine and Laser Surgery

Efficacy and safety of 1064-nm Q-switched Nd:YAG laser with low fluence for keloids and hypertrophic scars ... 18
SB Cho, SH Oh et al.
Journal of the European Academy of Dermatology and Venereology

Successful treatment of argyria using a low-fluence Q-switched 1064-nm Nd:YAG laser 19
TY Han, SJ Son et al.
International Journal of Dermatology

Efficacy of the fractional photothermolysis system with dynamic operating mode on acne scars and enlarged facial pores ... 20
SB Cho, SH Oh et al.
Dermatologic Surgery

Prevention of thyroidectomy scar using a new 1,550-nm fractional erbium-glass laser 21
JH Choe, WS Kim et al.
Dermatologic Surgery

Comparison of a 1,550 nm erbium:glass fractional laser and a chemical reconstruction of skin scars (CROSS) method in the treatment of acne scars:
A simultaneous split-face trial ... 22
HJ Kim, JH Lee et al.
Lasers in Surgery and Medicine

Atrophic acne scar treatment using triple combination therapy:
Dot peeling, subcision and fractional laser .. 23
WH Kang, JH Kim et al.
Journal of Cosmetic and Laser Therapy
<table>
<thead>
<tr>
<th>Topic</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSAIC™ - VARIOUS SCARS</td>
<td>Comparison of the effectiveness of nonablative fractional laser versus ablative fractional laser in thyroidectomy scar prevention: A pilot study</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>HS Kim, JY Lee et al.</td>
<td>Journal of Cosmetic and Laser Therapy</td>
</tr>
<tr>
<td></td>
<td>Treatment of periorbital wrinkles with 1550- and 1565-nm Er:glass fractional photothermolysis lasers: A simultaneous split-face trial</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>JY Jung, KY Chung et al.</td>
<td>Journal of the European Academy of Dermatology and Venereology</td>
</tr>
<tr>
<td></td>
<td>Platelet-rich plasma combined with fractional laser therapy for skin rejuvenation</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>MK Shin, NI Kim et al.</td>
<td>Dermatologic Surgery</td>
</tr>
<tr>
<td>MOSAIC™ - SKIN REJUVENATION</td>
<td>1,550-nm non-ablative fractional erbium-glass laser in the treatment of facial inflammatory acne: A preliminary study</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>JY Lee, MY Park, and JY Ahn</td>
<td>Korean Journal of Dermatology</td>
</tr>
<tr>
<td>MOSAIC™ - INFLAMMATORY ACNE</td>
<td>Treatment of alopecia areata with fractional photothermolysis laser</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>KH Yoo, CW Kim et al.</td>
<td>International Journal of Dermatology</td>
</tr>
<tr>
<td></td>
<td>The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>GY Lee, SJ Lee, and WS Kim</td>
<td>Journal of the European Academy of Dermatology and Venereology</td>
</tr>
<tr>
<td></td>
<td>Fractional photothermolysis laser treatment of male pattern hair loss</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>WS Kim, WS Park et al.</td>
<td>Dermatologic Surgery</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Effects of ablative 10,600-nm carbon dioxide fractional laser therapy on suppurative diseases of the skin: A case series of 12 patients</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>SB Cho, JH Lee et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasers in Surgery and Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower-fluence, higher-density versus higher-fluence, lower-density treatment with a 10,600-nm carbon dioxide fractional laser system: A split-face, evaluator-blinded study</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>JY Jung, SB Cho et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermatologic Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The combination of the copper bromide laser, a 10,600 nm ablative carbon dioxide laser and intralesional triamcinolone for the treatment of hypertrophic thyroidectomy scars</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>JH Kim, SH Lee et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal of the European Academy of Dermatology and Venereology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early postoperative treatment of thyroidectomy scars using a fractional carbon dioxide laser</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>JY Jung, JH Lee et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermatologic Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of striae distensae with nonablative fractional laser versus ablative CO₂ fractional laser: A randomized controlled trial</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>YJ Yang and GY Lee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annals of Dermatology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The effect of succinylated atelocollagen and ablative fractional resurfacing laser on striae distensae</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>JU Shin, KY Chung et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal of Dermatological Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multimodal management of atrophic acne scarring in the aging face</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>TG O’Daniel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aesthetic Plastic Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractional transepidermal delivery: A histological analysis</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>H Beltraminielli, N Dietrich and T Hunziker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermatology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Targeted laser reconstruction of skin scars using 10,600 nm carbon dioxide fractional laser</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>SJ Lee, SB Cho et al.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal of Cosmetic and Laser Therapy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

eCO2™ - VARIOUS SCARS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Authors</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of fractional CO\textsubscript{2} laser efficacy in acne scar</td>
<td>40</td>
<td>S Saryazdi and A Mohebbi</td>
<td>Journal of Lasers in Medical Sciences</td>
</tr>
<tr>
<td>Ablative fractional CO\textsubscript{2} laser may be a novel treatment for tattoo allergic reaction: A case report</td>
<td>41</td>
<td>B Barikbin, Z Akbari, and S Hejazi</td>
<td>Journal of Lasers in Medical Sciences</td>
</tr>
</tbody>
</table>

eCO2™ - SKIN REJUVENATION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Authors</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablative fractionated CO\textsubscript{2} Laser resurfacing for the face and neck</td>
<td>42</td>
<td>UP Reddy and JA Woodward</td>
<td>The American Journal of Cosmetic Surgery</td>
</tr>
<tr>
<td>Depth of eCO2 fractional resurfacing with 3 different spot sizes on facial skin \textit{in vivo}</td>
<td>43</td>
<td>A Husain, JA Woodward \textit{et al.}</td>
<td>The American Journal of Cosmetic Surgery</td>
</tr>
</tbody>
</table>

eCO2™ - SYRINGOMAS & WARTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Authors</th>
<th>Journal</th>
</tr>
</thead>
</table>

eCO2™ - OTHER INDICATIONS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
<th>Authors</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A case of congenital melanocytic nevus clinically improved by fractional carbon dioxide laser treatment</td>
<td>45</td>
<td>YJ Yang, HJ Kim \textit{et al.}</td>
<td>Korean Journal of Dermatology</td>
</tr>
<tr>
<td>Combination treatment of 10,600 nm ablative carbon dioxide fractional laser and narrow band UVB in refractory non-segmental vitiligo: A prospective, randomized half-body comparative study</td>
<td>46</td>
<td>J Shin, SH Oh \textit{et al.}</td>
<td>British Journal of Dermatology</td>
</tr>
</tbody>
</table>
The effect of fractional carbon dioxide lasers on idiopathic guttate hypomelanosis: A preliminary study
J Shin, SH Oh et al.
Journal of the European Academy of Dermatology and Venereology

Evaluation of morphological changes in degenerative cartilage using 3-D optical coherence tomography
JI Youn
Journal of the Optical Society of Korea

Superior lipolytic effect of the 1,444 nm Nd:YAG laser: Comparison with the 1,064 nm Nd:YAG laser
KC Tark, JE Jung, and SY Song
Lasers in Surgery and Medicine

Comprehensive histologic analysis of interstitial lipolysis with the 1444 nm wavelength during a 3-month follow-up
SD Lim, UC Yeo et al.
Histology and Histopathology

Ablation efficiency and relative thermal confinement measurements using wavelengths 1,064, 1,320, and 1,444 nm for laser-assisted lipolysis
JI Youn and JD Holcomb
Lasers in Medical Science

Facelift adjunctive techniques: skin resurfacing and volumetric contouring
JD Holcomb
Facial Plastic Surgery Clinics of North America
ACCUSCULPT™ - FACIAL CONTOURING

Laser-assisted facial contouring using a thermally confined 1444-nm Nd:YAG laser:
A new paradigm for facial sculpting and rejuvenation 53
JD Holcomb, DE Rousso et al.
Facial Plastic Surgery

ACCUSCULPT™ - BODY CONTOURING

Preliminary experience in body contouring and laser-assisted facial contouring
with micropulsed 1444 nm Nd:YAG laser-assisted lipolysis: A review of 24 cases 54
YC Jung
Laser Therapy

ACCUSCULPT™ - OTHER INDICATIONS

Treatment of lipomas using a subdermal 1,444-nm micropulsed
neodymium-doped yttrium aluminum garnet laser .. 55
SH Lee, KY Chung et al.
Dermatologic Surgery

Treatment of wrist ganglion using Nd:YAG laser .. 56
E Kim, SS Park et al.
Journal of the Korean Society for Surgery of the Hand

Successful treatment of recurrent digital mucoid cysts using a 1,444-nm
neodymium-doped yttrium aluminum garnet laser .. 57
JH Kim, SH Oh et al.
Dermatologic Surgery

Antifungal effects of a 1,444-nm neodymium:yttrium-aluminium-garnet laser
on onychomycosis: A pilot study ... 58
MJ Choi, SB Cho et al.
Journal of Dermatological Treatment

Successful treatment of multiple cutaneous neurofibromas using a combination
of shave excision and laser photothermocoagulation with a 1,444-nm
neodymium-doped yttrium aluminum garnet laser .. 59
HJ Kim, IH Kim et al.
Dermatologic Surgery
ACCUSCULPT™ - OTHER INDICATIONS

A case report of multiple eccrine hydrocystomas successfully treated with subdermal 1444-nm micropulsed neodymium-doped yttrium aluminum garnet laser .. 60
SH Lee, KY Chung, and JY Jung
Dermatologic Surgery

HEALITE™ - INTRODUCTION

The measurement of optimal power distance in LEDs ... 61
MK Park, YC Jo et al.
Korean Journal of Dermatology

HEALITE™ - WOUND HEALING

Is light-emitting diode phototherapy (LED-LLLT) really effective? ... 62
WS Kim and RG Calderhead
Laser Therapy

The systemic effect of 830-nm LED phototherapy on the wound healing of burn injuries: A controlled study in mouse and rat models ... 63
GY Lee and WS Kim
Journal of Cosmetic and Laser Therapy

HEALITE™ - WOUND HEALING

Prurigo pigmentosa treated with Jessner’s peel and irradiation with an 830-nm light-emitting diode ... 64
JR Choi, SE Chang et al.
The Journal of Dermatology

SOLARI™ - INFLAMMATORY ACNE

Inflammatory acne in the Asian skin type III treated with a square pulse, time resolved spectral distribution IPL system: A preliminary study .. 65
GS Lee
Laser Therapy
Table of Contents

ACTION™ - PIGMENTATION

A fractional 2,940 nm short-pulsed, erbium-doped yttrium aluminium garnet laser is effective and minimally invasive for the treatment of photodamaged skin in Asians 66
HM Lee, SE Chang et al.
Journal of Cosmetic and Laser Therapy

DENTA™ - PERIODONTAL APPLICATIONS

Effects of resolution of inflammation for low-power CO\textsubscript{2} laser treatment in gingivitis patients 67
HJ Song, BO Kim and HS Jang
Journal of the Korean Academy of Periodontology

In vitro study of the soft tissue effects of microsecond-pulsed CO\textsubscript{2} laser parameters during soft tissue incision and sulcular debridement .. 68
RM Vaderhobli, R Jordan et al.
Lasers in Surgery and Medicine

Screening of CO\textsubscript{2} laser (10.6 μm) parameters for prevention of enamel erosion 69
M Esteves-Oliveira, A Wiegand
Photomedicine and Laser Surgery

AUTHOR INDEX

Author index ... 70
© Journal of Cosmetic and Laser Therapy, 2007; 9: 253-255

TREATMENT OF TRAUMATIC TATTOO WITH THE Q-SWITCHED Nd:YAG LASER

Farzam Gorouhi, Parastoo Davari, Mansour Nassiri Kashani, and Alireza Firooz

Center for Research and Training in Skin Diseases and Leprosy, Medical Sciences / University of Tehran, Iran

Traumatic tattoos are undesirable tattoos caused by different foreign bodies such as fireworks’ particles, sand, metals, glass, gunpowder, asphalt, dust, or petroleum products embedded forcefully in the dermis. We report the case of a 54-year-old man who presented with sand and asphalt tattooing on his face following a bomb explosion 15 years ago. Q-switched Nd:YAG laser at a wavelength of 1064 nm with a spot size of 4 mm and a fluence of 7.96 J/cm² were [sic] applied to treat the patient. The patient tolerated the treatment very well. Most of the blue dots became whitened immediately after the procedure and remained almost clear after a 6-month follow-up.
NEW MELASMA TREATMENT WITH COLLIMATED LOW FLUENCE Q-SWITCHED Nd:YAG LASER

Se Yeong Jeong,1 Sung Eun Chang,1 Hana Bak,2 Jee-Ho Choi,2 and Il Hwan Kim1

1: Department of Dermatology, Korea University College of Medicine, Asan Medical Center; and
2: University of Ulsan College of Medicine, Seoul, Korea

Background: Laser treatment in melasma has previously failed because of the resulting inflammation and consequent pigmentation and excessive thermal damage caused by the use of high fluences.

Objective: This study is aimed at establishing the concept of the collimated low fluence Q-switched Nd:YAG laser as a treatment for melasma by investigating its therapeutic effects clinically as well as histopathologically.

Methods: 27 patients were treated weekly with Q-switched Nd:AG laser (1,064 nm wavelength, 7 mm spot size, 1.6 ~ 2.5 J/cm² fluence) for 8 weeks. The results were evaluated based on standardized clinical images that used a Robo skin analyzer, spectrophotometer, MASI score and general severity.

Results: 17 (58.8%) patients showed “GOOD” (50-75% improvement). No case of full recurrence was seen and partial recurrence was detected in 12/17 patients. Common adverse effects include pain, erythema, and temporary edema. Rarely, partial hypopigmented macules and diffuse hyperpigmentation appeared. Additional studies, such as immunohistochemical examination and electron microscopic examination, are also currently in progress.

Conclusions: The collimated low fluence Q-switched Nd:YAG Laser is effective in melasma treatment. This treatment method is a new concept that can be described as selective photothermolysis with minimal thermal damage and inflammation reaction to affected tissues by pigmentation. We consider this treatment method should be regarded as Minimized Selective Photothermolysis (MSP) that will provide a new effective treatment for melasma.
SUBCELLULAR SELECTIVE PHOTOTHERMOLYSIS OF MELANOSOMES IN ADULT ZEBRAFISH SKIN FOLLOWING 1064-nm Q-SWITCHED Nd:YAG LASER IRRADIATION

Jae Hwan Kim,¹ Ho Kim,² Hae Chul Park,² and Il-Hwan Kim¹

¹: Department of Dermatology, College of Medicine, Korea University, Seoul, Korea; and ²: Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Ansan, Korea

Background and Aims: The theory of selective photothermolysis suggests that brief pulses of laser at suitable wavelength and energy settings can cause selective damage to pigmented structures, cells, and organelles while sparing surrounding tissues. We postulated that repetitive treatments with low-fluence Q-switched Nd:YAG laser treatment (laser toning) would achieve selective photothermolysis at a subcellular level, sparing the cell containing the target pigment, and recent reports have suggested this is the case in the treatment of melasma. The present study was designed to test our hypothesis in the zebrafish model.

Materials and Methods: Anesthetized zebrafish had approximately half of their body treated with a 5-7 ns Q-switched 1064 nm Nd:YAG laser (7 mm spot, pulse energy 0.3, 0.4, 0.5, 0.7 and 0.9 J/cm²) and changes in melanosomes, melanophores, and adjacent cells were examined at this range of laser irradiation fluence. Pigment removal was assessed with gross macrophotography. To assess cellular damage in the target and surrounding cells, TUNEL staining evaluated the degree of apoptotic cell death, and double staining with 4,6-diamidino-2-phenylindole (DAPI) assessed cell survival through the state of the cell nuclei.

Results: At 0.3 J/cm² several pigmented spots remained under x40 magnification, but very few spots were evident for all other settings. DAPI staining showed normal nuclei for all the treatment fluences, confirming that cell necrosis was not caused by laser irradiation. TUNEL staining, however, showed dose-dependent degrees of apoptosis at higher settings with no apoptosis noted at 0.3 or 0.4 J/cm². The ideal setting to eliminate pigment almost completely in the zebrafish model while maintaining healthy cells was therefore 0.4 J/cm². We termed this phenomenon subcellular selective photothermolysis.

Conclusions: Our study confirmed that low-fluence Q-switched Nd:YAG laser energy, laser toning, could selectively photothermolyse melanosomes without killing melanocytes. This might offer a good approach for melasma treatment while preventing postinflammatory hyperpigmentation after melanocyte destruction, which is especially common in Asians.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
LOW-FLUENCE Q-SWITCHED NEODYMIUM-DOPED YTTRIUM ALUMINUM GARNET LASER FOR MELASMA WITH PRE- OR POST-TREATMENT TRIPLE COMBINATION CREAM

Se-Yeong Jeong,1 Jae-Bin Shin,1 Un-Cheol Yeo,2 Won-Serk Kim,3 and Il-Hwan Kim1

1: Department of Dermatology, College of Medicine, Korea University, Seoul, Korea; 2: Jongno S&U Dermatologic Clinic, Seoul; and 3: Kangbuk Samsung Hospital, Sungkyunkwan School of Medicine, Sungkyunkwan University, Seoul, Korea

Background: Topical triple combination (TC) treatment is considered the primary approach to melasma. Recently, collimated low-fluence 1,064-nm Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser treatment has attracted attention as an alternative approach.

Objectives: To compare the clinical efficacy and adverse effects of low-fluence Q-switched Nd:YAG laser when performed before and after treatment with topical TC using a split-face crossover design.

Methods: Thirteen patients with melasma received topical treatment with TC cream or 1,064-nm Q-switched Nd:YAG laser treatment on opposite sides of the face for 8 weeks, and then treatments were reversed for 8 weeks. Responses were evaluated using the Melasma Area and Severity Index (MASI) scoring system, spectrophotometry measurements, and a subjective self-assessment method.

Results: After 16 weeks, better results were seen in subjective assessments when laser treatment was used after 8 weeks of topical TC treatment than before usage of TC. There were no significant adverse effects with the laser treatments.

Conclusions: Laser treatment after topical TC cream was found to be safer and more effective than the post-treatment use of topical agents.
Recently, a new approach to treatment of melasma using the low fluence Q-switched (QS) 1064 nm Nd:YAG laser has increasingly been performed successfully and published as “laser toning” in Asian countries. However, we found some confusion with regard to the concept, mechanism and safe parameters in recent papers on laser toning. They use various passes (e.g., 2-10) of different low fluences (e.g., 1.6-5.0 J/cm²) and different intervals in order to achieve the observational clinical effect. Due to these wide variations of parameters, the clinical efficacy and safety of this modality has provoked controversy. Over the past few years, a couple of studies have been conducted on the effects of laser toning, however, little is known about the mode of action based on scientific concepts. In our clinical, ultrastructural and zebrafish studies, we found an effective, reliable and safe approach using the low fluence QS 1064 nm Nd:YAG laser in treatment of melasma.
A LOW FLUENCE Q-SWITCHED Nd:YAG LASER MODIFIES THE 3D STRUCTURE OF MELANOCYTE AND ULTRASTRUCTURE OF MELANOSOME BY SUBCELLULAR SELECTIVE PHOTOTHERMOLYSIS

Ji Young Mun,1 Se Yeong Jeong,2 Jae Hwan Kim,2 Sung Sik Han,1 and Il-Hwan Kim2

1: School of Life Sciences and Biotechnology, Korea University, Seoul; and 2: Department of Dermatology, Korea University College of Medicine, Ansan Hospital, Ansan, South Korea

Background and Aims: Laser treatment using low fluence for melasma was previously introduced to overcome postinflammatory hypermelanosis after Q-switched laser therapy. However, research on the mechanism of this treatment is very limited. In this study, a collimated low fluence 1064 nm Q-switched Nd:YAG laser with a pulse width of <7 ns was applied using top-hat beam mode. The aim of this study was to investigate the mode of action of this laser treatment through electron microscopy.

Methods: The effectiveness of this treatment was confirmed by clinical photos, melasma area and severity index and spectrophotometer. To understand the mode of action, the three-dimensional structure of melanocytes in the epidermis was analyzed using serial images acquired by a 3VIEW surface block face scanning electron microscope.

Results: In the epidermis, after laser treatment, fewer dendrites in the melanocytes were observed compared with pretreatment. In addition, ultrastructural changes in the melanosome were studied using transmission electron microscopy, which showed that laser treatment caused selective photothermolysis on stage IV melanosomes.

Conclusions: This treatment should therefore be regarded as an effective method for treating melasma through subcellular-selective photothermolysis.
THE DUAL TONING TECHNIQUE FOR MELASMA TREATMENT WITH THE 1064 nm Nd:YAG LASER: A PRELIMINARY STUDY

HY Kang,1 JH Kim,2 and BC Goo3

1: Department of Dermatology, Ajou University School of Medicine, Suwon; 2: Dr Kim’s Skin and Laser Clinic, Suwon; and 3: Institute of Medical Laser Research and Development, Lutronic corporation, Goyang, Korea

Background and Aims: Melasma is a treatment-resistant and acquired pigmented facial skin condition of uncertain etiology particularly prevalent in the older Asian female. Traditional bleaching agents have offered some success. Intense pulsed light (IPL), fractionated nonablative and more recently ablative laser technology have also been used, but were associated with postoperative hyperpigmentation in the Asian skin. The present study examined the consecutive application of 2 modes of the 1064 nm Nd:YAG laser in the ‘dual toning’ process.

Subjects and Methods: Thirty females, mean age 41.4 ± 11.96 yr, Fitzpatrick skin type IV, participated in the prospective uncontrolled study. All subjects were treated with the 1064 Nd:YAG laser, first with the 5 ns Q-switched mode, 1.2 J/cm², 8 mm collimated handpiece with multiple passes and then immediately after with the micropulsed mode, 300 μs, 7.0 J/cm², 5 mm handpiece, multiple passes. Mild and even erythema was the endpoint. Treatments were given every other week until maximum improvement was obtained. Improvement was rated at a final assessment 6 weeks after the final treatment on a 5 point scale where 1 was little or no improvement and 5 was maximum improvement.

Results: At the final treatment session and at the 6-week assessment, 20 of the 30 patients (67%) saw a fair to excellent degree of improvement, 7 (23%) had visible improvement and little or no improvement was seen in 3 (10%) patients. There were no unexpected side effects in any patients.

Conclusions: The dual toning technique using the 1064 nm Nd:YAG laser was safe and effective, and well-tolerated by all patients without anesthesia. Larger controlled studies are merited with more objective measurement techniques to confirm the results of this preliminary study.
ERYTHEMA AB IGNE SUCCESSFULLY TREATED USING 1,064-nm Q-SWITCHED NEODYMIUM-DOPED YTTRIUM ALUMINUM GARNET LASER WITH LOW FLUENCE

Suhyun Cho, Jin Young Jung, and Ju Hee Lee
Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

Background and Aims: Erythema ab igne, which means “redness from fire,” is a reticular, macular dermatosis that develops secondary to prolonged heat exposure. Although spontaneous regression can occur, it is a precancerous lesion that has the potential to develop into squamous cell carcinoma and Merkel cell carcinoma, so early treatment is advised. Up till now, however, there has been no standard treatment for this condition. We report herein on a case of erythema ab igne successfully treated with low fluence Q-switched Nd:YAG laser toning.

Subject and Methods: A 23-year-old woman presented with a 3-month duration of mottled erythematous patches on her legs. She had a history of prolonged and repeated exposure to an electric heater located on her left side while she was working on her desk during the winter season. Erythema ab igne was diagnosed, based on her history of heat exposure, together with the clinical distribution of the reticular, hyperpigmented erythema on the heat-exposed site. She was treated using a 1,064-nm Q-switched Nd:YAG laser with low fluences in what is referred to as the laser toning approach (5 ns pulse width, 1.8-2.5 J/cm², 7 mm diameter collimated beam, 2-3 passes, 20-30% overlap) for 3 sessions, after which the skin lesions had almost completely cleared. The mild post-therapy erythema spontaneously resolved within a few hours.

Conclusions: Laser toning with the low-fluence Q-switched Nd:YAG laser was easily applied, with minimal downtime and without post-therapy bleeding or crust formation. Although further studies are required to compare the cost effectiveness of laser toning with that of awaiting the spontaneous regression of the lesions, which sometimes may be incomplete, we postulate that laser toning can be an effective treatment option for patients with erythema ab igne for whom the reticulated, mottled skin lesions are a psychosomatic problem.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
The above study by Jeong and colleagues (Dermatol Surg 2010; 36: 909-918) answers the important question of how medical skin lightening agents should be used in combination with laser therapy for the treatment of melasma. The 13 subject split-face study evaluated the efficacy of an 8-week application of 4% hydroquinone, 0.05% tretinoin, and 0.01% fluocinolone acetonide combination cream before or after low-fluence 1,064-nm Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser treatment. This design was employed to determine whether it is better to suppress pigment production in melasma patients before laser injury to the skin or address the postinflammatory hyperpigmentation component only by medical skin lightening therapy after the laser treatment.

The study demonstrated that pretreatment with medical skin lightening was most effective. This may be due to several factors, which will be briefly explored. The triple combination cream used for medical skin lightening in this research contained hydroquinone to inhibit melanin production, tretinoin to enhance hydroquinone penetration and decrease melanosome transfer, and fluocinolone acetonide to minimize irritation. Hydroquinone, a phenolic compound chemically known as dihydroxybenzene, functions by inhibiting the enzymatic oxidation of tyrosine and phenol oxidases. It covalently binds to histidine or interacts with copper at the active site of tyrosinase. It also inhibits ribonucleic acid and deoxyribonucleic acid synthesis and may alter melanosome formation, selectively damaging melanocytes. These activities suppress the melanocyte metabolic processes, inducing a gradual decrease of melanin pigment production, but hydroquinone is a highly unstable compound undergoing rapid oxidation when exposed to air, resulting in the melanocyte-toxic products p-benzoquinone and hydroxybenzoquinone, which can cause depigmentation.

It is the safety concerns arising from oxidized hydroquinone that have led to the recent controversy regarding its use in the United States, Europe, and Asia. Hydroquinone remains the most effective topical pigment-lightening agent currently available, and combining it with a topical retinoid and corticosteroid heightens its efficacy. This research demonstrated that pretreatment with the cream combination was more efficacious probably because it takes time to shut down the melanin-producing machinery. If melanin production is decreased before skin laser injury, postinflammatory hyperpigmentation is reduced and the melasma improved. If the medical cream treatment is used only after laser injury, the melanin-producing machinery is operating at full capacity, increasing chances for postinflammatory hyperpigmentation and slowing the visual improvement of the melasma.

The findings of this research are valuable to the dermatologic surgeon who treats pigmentary disorders. Medical hyperpigmentation therapy of at least 8 weeks should precede laser treatment for melasma to achieve the optimal result.
LOW-FLUENCE Q-SWITCHED 1,064-nm NEODYMIUM-DOPED YTTRIUM ALUMINUM GARNET LASER FOR THE TREATMENT OF FACIAL PARTIAL UNILATERAL LENTIGINOSIS IN KOREANS

Yoonhee Lee,1 Eung Ho Choi,1 and Se Won Lee2

1: Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju; and 2: Yonsei Lee Dermatology and Skin Clinic, Seoul, Republic of Korea

Background: Established pigment lasers have been used in the treatment of partial unilateral lentiginosis (PUL) but have shown unsatisfactory results.

Objective: To determine the effectiveness and safety of low-fluence 1,064-nm Q-switched neodymium-doped yttrium aluminum garnet (QS Nd:YAG) laser treatment of PUL in Koreans.

Materials and Methods: Ten Korean patients with facial PUL were treated with 1,064-nm QS Nd:YAG laser, 7-mm spot size, 1.5- to 2.5-J/cm² fluence at 2-week intervals. Standard digital photographs were taken under the same condition at baseline and at each follow-up visit. Independent dermatologists evaluated the photographs. All patients completed a questionnaire to assess their subjective satisfaction with the laser treatment using a 5-point grading system. Degree of pain was assessed using a visual analog scale (0-10). Any complications and side effects were recorded at each visit. Patients were followed up every 4 weeks for 12 weeks after the last laser treatment.

Results: Five of 10 patients (50%) had achieved excellent improvement (76-100%) at the end of treatment, and the remaining 50% had good improvement (51-75%). In patient self-evaluation of the degree of improvement of PUL, 9 (90%) assessed it as very much to much improved (>50% improvement), and 1 (10%) assessed it as moderate (50-75%). Subjects rated the pain associated with laser treatment at a mean score of 3.3 (range: 1-5) on a scale of 1 to 10. Mottled hypopigmentation developed in two patients. At follow-up, 12 weeks after the last laser session, all of the patients had partial recurrence, which was resolved with one to two sessions of laser treatment.

Conclusions: Low-fluence 1,064-nm QS Nd:YAG laser treatment for facial PUL in Koreans showed improvement with no significant side effects. We recommend the low-fluence 1,064-nm QS Nd:YAG laser as a treatment option for facial PUL.
In recent years, laser toning has gained popularity for the treatment of melasma, and tyrosinase inhibitors are conventionally used to prevent recurrence after this treatment. The effectiveness of this treatment modality, however, is still questionable, and additional *in vivo* studies are needed to validate the method. In this study, we used adult zebrafish skin as an adult melanocyte regenerative system and examined the simulated human skin response to laser toning. Melanosomes regenerated after selective photothermolysis, and these organelles showed a bi-directional translocation pattern in accordance with the changes of intact melanosome patterns. Furthermore, a tyrosinase inhibitor, 1-phenyl-2-thiourea (PTU), completely blocked melanosome regeneration after laser irradiation, but this inhibitor failed to prevent melanosome regeneration after the medication was discontinued. Finally, arbutin and kojic acid, the commercially available tyrosinase inhibitors, slowed down but did not completely block melanosome regeneration. Based on these findings, we describe the limitations of laser toning treatment of melasma and the combined use of tyrosinase inhibitors. We suggest that melanosomes in adult zebrafish skin can be utilized for studying melanosome regeneration response to laser irradiation and for developing a system to assess the comparative efficacy of melanogenic regulatory compounds.
EFFECTS OF VARIOUS PARAMETERS OF THE 1064 nm Nd:YAG LASER FOR THE TREATMENT OF ENLARGED FACIAL PORES

Mi Ryung Roh,¹ Hye Jin Chung,³ and Kee Yang Chung¹²

¹: Department of Dermatology and Cutaneous Biology Research Institute Yonsei University College of Medicine, Seoul; ²: Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul; and ³: Department of Dermatology and Cutaneous Biology, Jefferson Medical College, PA, USA

Background: A variety of treatment modalities have been used to reduce the size of enlarged facial pores without obvious success. Objectives: To assess and compare the effects of various parameters of a 1064 nm Nd:YAG laser in the treatment of enlarged facial pores.

Methods: This was a prospective intra-individual left-right comparative study. A total of 40 individuals with enlarged facial pores were recruited for this study. Ten individuals were respectively treated on one half of the face with a quasi long-pulsed 1064 nm Nd:YAG laser (method 1), a Q-switched 1064 nm Nd:YAG laser (method 2), both quasi long-pulsed and Q-switched 1064 nm Nd:YAG lasers without carbon-suspended lotion (method 3), and both quasi long-pulsed and Q-switched 1064 nm Nd:YAG lasers with carbon-suspended lotion (method 4). The other half of the face was left untreated as a control. Five laser sessions were performed with a 3-week interval. The pore sizes were measured using an image analysis program and the sebum level was measured with a Sebumeter® before and after the treatments.

Results: The pore size and sebum level decreased in all four methods on the treated side compared to the control (p<0.05).

Conclusions: Treatment with a 1064 nm Nd:YAG laser is an effective method for reducing pore size and sebum level.
TREATMENT OF ENLARGED PORES WITH THE QUASI LONG-PULSED VERSUS Q-SWITCHED 1064 nm Nd:YAG LASERS: A SPLIT-FACE, COMPARATIVE, CONTROLLED STUDY

MR Roh,¹ BC Goo,² JY Jung,³ HJ Chung,¹ and KY Chung¹

¹ Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul; ² Institute of Medical Laser Research and Development, Lutronic corporation, Goyang, South Korea; and ³ Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA

Background and Aims: A variety of treatment modalities have been used to reduce the size of enlarged pores. The 1064 nm Nd:YAG laser, in addition to its role in removal of tattoos and age-related dyschromia, depilation and skin rejuvenation, may also play a role in reducing the size of enlarged pores. The present split-face controlled study assessed and compared the efficacy between the quasi long-pulsed (micropulsed) and the Q-switched modes of the Nd:YAG laser in the treatment of enlarged pores.

Subjects and Methods: Twenty subjects with enlarged pores were recruited for the micropulsed vs Q-switched study, all treated with the same 1064 nm Nd:YAG laser system. Ten subjects were treated with the 300 μs micropulsed mode and the other ten subjects were treated with the 5 ns Q-switched mode. All subjects were treated on the right half of the face, the left half serving as an untreated control. Five laser sessions were performed. The pore sizes were measured using an image analysis program and the sebum level was measured with a Sebumeter® before and after the treatments.

Results: The pore size and sebum level significantly decreased with treatment on the treated side (right cheek and right half of nose) in both the micropulsed and Q-switched modes compared to the control side. (p<0.05), but without any statistically significant difference between the modes.

Conclusions: The micropulsed and Q-switched Nd:YAG laser treatments reduced pore size and sebum levels with more or less equal efficacy and with no adverse side effects.
ENLARGED PORES TREATED WITH A COMBINATION OF Q-SWITCHED AND MICROPULSED 1064 nm Nd:YAG LASER WITH AND WITHOUT TOPICAL CARBON SUSPENSION: A SIMULTANEOUS SPLIT-FACE TRIAL

HJ Chung,1 BC Goo,2 HJ Lee,3 MR Roh,4 and KY Chung4

1: Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; 2: Institute of Medical Laser Research and Development, Lutronic Corporation, Goyang; 3: Department of Dermatology, CHA Bundang Medical Center, CHA University, Seongnam; and 4: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

Background and aims: Enlarged facial pores remain one of the major cosmetic concerns among Asian females. This study attempted to assess and compare the efficacy of a combination of the Q-switched and quasi long-pulsed (micropulsed) Nd:YAG laser to reduce the size of the enlarged pores with and without an exogenous photoenhancer.

Methods: In twenty five female subjects, mean age 34.04 yr and skin type II-IV, a carbon lotion as a photoenhancer was applied on one side of the face (Method 1) and the other side was used as the control (Method 2). The entire face was then treated with a single pass of the 1064 nm Nd:YAG laser in the micropulsed mode, pulse fluence and width of 2.3 J/cm² and 300 μs, respectively. Multiple passes were then delivered in the Q-switched mode (2.5 J/cm² and 5 ns).

Results: Three weeks after the final treatment, 75% of the subjects showed improvement with method 1 whereas 67% showed improvement with method 2. No adverse side effects were reported with either method.

Conclusions: Although histological confirmation was not performed, we were able to prove both subjectively and objectively that the use of the combination of the micropulsed and Q-switched modes of the Nd:YAG laser was useful in reducing pore size, and that the photoenhancer improved the efficacy.
HISTOMETRIC CHANGES AND EPIDERMAL FGF9 EXPRESSION IN
CARBON PHOTOENHANCER-ASSISTED Nd:YAG LASER TREATMENT

Zhenlong Zheng,1,2 Jihyun Kim,1 Min Ju Choi,1 Boncheol Goo,3 Soo Il Chun,4 and Sung Bin Cho1

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; 2: Department of Dermatology, Yanbian University Hospital, Yanji, China; 3: R&D Center for Advanced Laser Technology, Lutronic Corp., Goyang, Korea; and 4: CHUN Dermatopathologic Clinic, Seoul, Korea

Fibroblast growth factor (FGF)-9 plays an important role in wound healing. However, the effects of non-ablative laser treatment on the expression of FGF9 have not been fully investigated. Non-ablative 1,064-nm quasi-long pulsed and Q-switched Nd:YAG laser treatments were delivered to hairless mice with and without a carbon photoenhancer. For histological and immunohistochemical analyses, sections were stained with hematoxylin and eosin as well as FGF9 antibody. Significantly, increased epidermal and dermal thickness was noted in mice treated with carbon photoenhancer-assisted quasi-long pulsed or Q-switched laser treatments compared to those treated without a carbon photoenhancer. Expression of FGF9 was observed in both the epidermis and dermis in all groups of mice during the healing process. Earlier and more pronounced expression of FGF9 was detected in mice treated with carbon photoenhancer-assisted quasi-long pulsed laser therapy. In addition, two peaks of pronounced FGF9 expression were observed, especially in mice that underwent carbon photoenhancer-assisted 1,064-nm quasi-long pulsed Nd:YAG laser treatment. A carbon photoenhancer seems to enhance the effect of quasi-long pulsed and Q-switched Nd:YAG laser treatment. In addition, expression of FGF9 may play an important role in the healing process after laser treatments and could contribute to histometric changes.
PROSPECTIVE RANDOMIZED CONTROLLED CLINICAL AND HISTOPATHOLOGICAL STUDY OF ACNE VULGARIS TREATED WITH DUAL MODE OF QUASI-LONG PULSE AND Q-SWITCHED 1064-nm Nd:YAG LASER ASSISTED WITH A TOPICALLY APPLIED CARBON SUSPENSION

Jae Yoon Jung,¹,² Jong Soo Hong,¹,² Chang Ho Ahn,¹ Ji Young Yoon,² Hyuck Hoon Kwon,¹,² and Dae Hun Suh,¹,²

¹: Department of Dermatology, Seoul National University College of Medicine, Seoul; and ²: Acne Research Laboratory, Seoul National University Hospital, Seoul, South Korea

Background: Acne treatments using laser and light devices have been reported to have varying degrees of efficacy. However, there has been no study of treatment of acne using a dual mode (quasi-long pulse and Q-switched mode) 1064 nm Nd:YAG laser assisted with a topically applied carbon suspension.

Objective: To evaluate the clinical efficacy, safety, and histological changes of new laser treatment method for acne vulgaris.

Methods: Twenty-two patients received 3 sessions of quasi-long pulse and Q-switched Nd:YAG laser treatment assisted with a topically applied carbon suspension at 2-week intervals in a randomized split face manner.

Results: At the final visit, the inflammatory acne lesions were reduced on the laser-treated side by 58.6% (P<.001), but increased on the untreated side by 5%. The noninflammatory acne lesions were reduced on the laser-treated side by 52.4% (P<.001). Sebum output reduction, inflammatory cell and cytokine reductions, a decrease of the thickness of a perifollicular stratum corneum and a full epithelium, and skin rejuvenation effect were found. The histopathologic examination of the acne lesions showed decreased inflammation and immunostaining intensity for interleukin 8, matrix metalloproteinase-9, toll-like receptor-2, and nuclear factor kappa B, and tumor necrosis factor alpha was reduced significantly. No severe adverse reactions were reported. All patients reported mild transient erythema that disappeared in a few hours.

Limitations: The number of subjects studied was small.

Conclusions: This laser treatment was rapid and effective for treating not only the inflammatory but also the noninflammatory acne lesions when compared with the control side. The histopathologic findings correlated well with the clinical acne grade and treatment response. This novel laser treatment appears to be safe and effective for acne treatment.
Carbon Assisted Q-Switched Nd:YAG Laser Treatment with Two Different Sets of Pulse Width Parameters Offers a Useful Treatment Modality for Severe Inflammatory Acne: A Case Report

Soo Il Chun,1 and R. Glen Calderhead2

1: Dr Chun’s Dermatology Clinic, Seoul, Korea; and 2: Japan Phototherapy Laboratory, Tochigi, Japan

Background and Aims: The treatment of inflammatory and noninflammatory acne still presents problems to patients and dermatologists. A new technique using two different sets of 1064nm Nd:YAG laser parameters has been developed in combination with a topical carbon lotion. A preliminary test of the efficacy of this new treatment technique is reported.

Subject and Methods: A 14-year-old girl presented with moderate to severe pustular and cystic acne over the bilateral cheeks and chin. Following topical local anesthesia, a topical carbon lotion was applied to the face, and a Q-switched Nd:YAG laser was used first in a quasi-long pulsed mode (a 300 μs pulse width at 1.1-1.5 J/cm²) followed immediately by a Q-switched mode (5 ns pulse width, 1.5-2.0 J/cm²) using a 7 mm handpiece for both modes. Six treatments were given, 2 weeks apart.

Results: The procedure was well-tolerated. By the fourth treatment significant improvement was observed, and by the sixth treatment, better than 90% clearance of inflammatory lesions was achieved. At the 8-week follow-up after the last treatment, long-lasting improvements in the patient’s acne were noted. Improvement was also noted in closed comedones and in the general skin condition, especially pores, sebum reduction, and the red spots seen after inflammatory acne. The patient was satisfied with the result.

Conclusions: This new, minimally invasive technique as a stand-alone treatment gave very good clearance of inflammatory acne with minimal patient down time. Marked reduction in active acne was observed during treatments and at the 2-month followup visit. Further improvement could probably be achieved with other adjunctive therapeutic modalities.
EFFICACY AND SAFETY OF 1064-nm Q-SWITCHED Nd:YAG LASER WITH LOW FLUENCE FOR KELOIDS AND HYPERTROPHIC SCARS

SB Cho,1 JH Lee,1 SH Lee,1 SJ Lee,2 D Bang,1 and SH Oh1

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; and 2: Yonsei Star Skin & Laser Clinic, Seoul, Korea

Background: Several treatment modalities using laser devices have been used for the treatment of keloids and hypertrophic scars with various therapeutic outcomes.

Objective: The purpose of this study was to describe the efficacy and safety of a 1064-nm Q-switched (QS) Nd:YAG laser with low fluence on keloids and hypertrophic scars.

Methods: Keloids and hypertrophic scars located at 21 anatomic sites in 12 Korean patients (10 men and 2 women; mean age 23.8 years, range 21-33) were treated using a 1064-nm QS Nd:YAG laser with low fluence at 1-2 week intervals. Treatment settings were 1.8-2.2 J/cm², 7-mm spot size and 5-6 passes with appropriate overlapping.

Results: Follow-up data collected 3 months after the final treatment revealed decreases in the mean score for the following lesion characteristics: pigmentation from 1.8 to 1.2; vascularity from 1.4 to 1.0; pliability from 3.0 to 2.0 and height from 2.3 to 1.8. The modified Vancouver General Hospital Burn Scar Assessment score decreased from 8.6 to 5.9 ($P < 0.0001$). Observed side-effects were a mild prickling sensation during treatment, and mild post-treatment erythema, both of which resolved within a few hours.

Conclusions: Our results demonstrate that the QS Nd:YAG laser with low fluence may be used for the treatment of keloids and hypertrophic scars.
SUCCESSFUL TREATMENT OF ARGYRIA USING A LOW-FLUENCE Q-SWITCHED 1064-nm Nd:YAG LASER

Tae Young Han, Hee Sun Chang, Hyun Kyung Lee, and Sook-Ja Son

Department of Dermatology, Eulji General Hospital, College of Medicine, Eulji University, Seoul, Korea

Background: Argyria is a rare skin disease caused by cutaneous deposits of silver granules as a result of exposure to silver substrates or ingestion of silver salt. This pigmentation change causes cosmetic problems, and there was previously no recognized effective treatments for argyria.

Objective: To evaluate the treatment effect of a low-fluence Q-switched 1064-nm Nd:YAG laser on argyria.

Subjects and Methods: Case report of a 49-year-old with a history of ingestion of a colloidal silver solution daily for approximately one year as a traditional remedy.

Results: After seven sessions of treatment, the patient's skin color returned to normal.

Conclusion: A low-fluence Q-switched 1064-nm Nd:YAG laser provided safe and effective treatment for the skin discoloration associated with argyria.
EFFICACY OF THE FRACTIONAL PHOTOTHERMOLYSIS SYSTEM WITH DYNAMIC OPERATING MODE ON ACNE SCARS AND ENLARGED FACIAL PORES

Sung Bin Cho,1 Ju Hee Lee,1 Moon Jung Choi,2 Kyu-Yeop Lee,1 and Sang Ho Oh1

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul; and 2: Cha and Park Skin Clinic, Uijeongbu, Korea

Background: Current treatments for acne scars and enlarged facial pores have shown limited efficacy.

Objective: To evaluate the efficacy and safety of the fractional photothermolysis system (FPS) with dynamic operating mode on acne scars and enlarged pores.

Materials and Methods: Twelve patients with mild to moderate atrophic acne scars and enlarged pores were included in this study. Three sessions of FPS treatment were performed for acne scars and facial pores monthly. Two blinded dermatologists who compared before and after photos based on a quartile grading scale conducted objective clinical assessments of acne scar- and facial pore-treated areas. We took a biopsy immediately after one treatment with the laser from one of the authors to assess the histologic effects of the laser on facial pores.

Results: Follow-up results at 4 months after the last treatment revealed that, of the 12 patients, for acne scars, five demonstrated clinical improvements of 51% to 75% and three demonstrated improvements of 76% to 100%, and for facial pores, five demonstrated moderate clinical improvements of 26% to 50% and three demonstrated improvements of 76% to 100%. Side effects, including pain, post-treatment erythema, and edema, were resolved within 1 week.

Conclusion: We suggest that the FPS may provide a new treatment algorithm in some cases with acne scars and enlarged pores. Considering the lack of placebo-controlled, split-face design of our study, optimized, prospective studies should be conducted to fully assess the efficacy of FPS with dynamic operating mode.
PREVENTION OF THYROIDECTOMY SCAR USING A NEW 1,550-nm FRACTIONAL ERBIUM-GLASS LASER

Jun-Ho Choe,1 Yong-Lai Park,2 Beom-Joon Kim,3 Myeung Nam Kim,3 Nark Kyoung Rho,4 Byung-Soon Park,4 Young-Jun Choi,5 Kea Jeung Kim,5 and Won-Serk Kim5

1: Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul; 2: Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul; 3: Department of Dermatology, Chung-Ang University College of Medicine, Seoul; 4: Department of Dermatology, Leaders Clinic, Seoul; and 5: Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea

Background: Surgical scars are a common cosmetic problem that occurs in various surgical fields including dermatology. Diverse trials have been made to prevent this annoying scar formation. Recently, 585- and 595-nm pulsed dye laser irradiation presented satisfactory cosmetic outcome for the treatment of surgical scars. Other fractionated lasers or light devices were also applied for scar treatment.

Objective: To determine the effectiveness and safety of a newly developed 1,550-nm fractional erbium-glass laser in the prevention of scar formation after total thyroidectomy.

Materials and Methods: Twenty-seven ethnic South Korean patients with linear surgical suture lines after total thyroidectomy operation were treated with a 1,550-nm fractional erbium-glass laser. The same surgeon performed all of the operations using the same surgical techniques. Each patient was treated four times at 1-month intervals using the same parameters (5-10 mm spot size, 10 mJ, 1,500 spot/cm², static mode). Initiation of the first irradiation was made approximately 2 to 3 weeks after the thyroidectomy. The scar prevention effects were evaluated each month for 6 months after thyroidectomy. Two kinds of assessment methods were applied in this evaluation. First, the Vancouver Scar Scale (VSS) was used. Second, three independent physicians gave a global assessment valuation to the final cosmetic results: poor (1), fair (2), good (3), or excellent (4). These results were compared with the surgical scars of a control group (patients who denied laser treatments and had no other treatments during the 6 months after total thyroidectomy by the same surgeon).

Results: The average VSS score was lower in the laser treatment group. The global assessment also presented better cosmetic outcomes in the treatment group than in the controls.

Conclusions: A new 1,550-nm fractional erbium-glass laser may efficiently repress the formation and hypertrophy of thyroidectomy scars on the neck, and it can be safely applied in relatively dark Asian skin without noticeable adverse effects.
COMPARISON OF A 1,550 nm ERBIUM:GLASS FRACTIONAL LASER AND A CHEMICAL RECONSTRUCTION OF SKIN SCARS (CROSS) METHOD IN THE TREATMENT OF ACNE SCARS: A SIMULTANEOUS SPLIT-FACE TRIAL

Hee Jung Kim, Tae Gyun Kim, Yeon Sook Kwon, Jin Mo Park, and Ju Hee Lee

Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

Background and Objective: Acne scarring is a common complication of acne but no effective single treatment modality has been developed. The study was designed to compare the efficacy of a 1,550 nm Er:Glass fractional laser and chemical reconstruction of skin scar (CROSS) method in the treatment of acne scars.

Study Design/Materials and Methods: A split-face trial was conducted in 20 patients (10 rolling, 10 ice-pick types) with acne scars. One side was treated with the 1,550 nm Er:Glass fractional laser three times with a 6-week interval, and the other side was treated with the CROSS method two times every 12 weeks.

Results: Significant improvement was observed in both sides of the face. In the rolling type scar, the objective and subjective improvement rates were significantly higher in the sides treated with laser than the CROSS method. However, in the icepick type, there were no statistically significant differences between the two treatment sides. In the laser sides, grades of pain were significantly higher than in those treated with the CROSS method. However, downtimes and lasting days of erythema were significantly longer in the sides treated with the CROSS method.

Conclusions: The 1,550 nm Er:Glass fractional laser and the CROSS method were both well-tolerated and effective treatment options for acne scars. However, there was a relatively small difference between the two treatment modalities. Therefore, dermatologists should consider the acne scar type to select the treatment options.
ATROPHIC ACNE SCAR TREATMENT USING TRIPLE COMBINATION THERAPY: DOT PEELING, SUBCISION AND FRACTIONAL LASER

Won Hyoung Kang,1 Yun Jeon Kim,2 Won Sik Pyo,2 Sung Jin Park,3 and Jie Hoon Kim2

1: Department of Dermatology, College of Medicine, Kwan-Dong University, Ilsan; Departments of 2: Dermatology, and 3: Plastic Surgery, J&S Aesthetic Clinic, Suwon, Korea

Background and Objective: Atrophic scars are a common complication of acne. Many modalities are proposed but each does not yield satisfactory clinical outcomes. Thus, a new combination therapy is suggested that incorporates (i) dot peeling, the focal application and tattooing of higher trichloroacetic acid concentrations; (ii) subcision, the process by which there is separation of the acne scar from the underlying skin; and (iii) fractional laser irradiation. In this pilot study, the efficacy and safety of this method was investigated for the treatment of acne scars.

Subjects and Methods: Ten patients received this therapy for a year. Dot peeling and subcision were performed twice, 2-3 months apart and fractional laser irradiation was performed every 3-4 weeks. Outcomes were assessed using scar severity scores and patients’ subjective ratings.

Results: Acne scarring improved in all of the patients completing this study. Acne scar severity scores decreased by a mean of 55.3%. Eighty percent of the patients felt significant or marked improvement. There were no significant complications at the treatment sites.

Conclusions: It would appear that triple combination therapy is a safe and very effective combination treatment modality for a variety of atrophic acne scars.
COMPARISON OF THE EFFECTIVENESS OF NONABLATIVE FRACTIONAL LASER VERSUS ABLATIVE FRACTIONAL LASER IN THYROIDECTOMY SCAR PREVENTION: A PILOT STUDY

Hei Sung Kim, Ji Hae Lee, Young Min Park & Jun Young Lee

Department of Dermatology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea

Background and Aims: Open thyroidectomy in the anterior neck can result in postoperative scarring and the cosmetic outcome of the scar after thyroidectomy is of particular importance to women. Recently, focus has been made on ‘laser scar prevention’. The purpose of this split-scar study was to examine and compare laser intervention in the wound healing process in thyroidectomy scars with two different lasers.

Subjects and Methods: Seven patients (5 female, 2 male, Fitzpatrick skin type III-IV) with fresh thyroidectomy scars 2-3 weeks after surgery were enrolled in the study. The average age was 45.1 years (range 28-64 years). Scars were divided into 2 equal portions. Patients were randomized for treatment of one-half of the scar with a non-ablative 1550 nm fractional Er:glass laser (5-10 mm tip, 10 mJ pulse, 2 passes) and the other half with an ablative 2940 nm fractional Er:YAG laser (50 μm depth, 11% coverage, spot size 1). Three sessions were given at 4-week intervals with a post-treatment follow-up of 6 months. Clinical photography was taken at baseline and at the 6-month assessment. Scars were comparatively evaluated for widening, visibility of the incision line, height (scar elevation or depression) erythema and pigmentation.

Results: All patients completed the study, and there were no adverse events. The portion treated with the fractional Er:YAG laser scored significantly better in the clinical assessment (6 out of 7 patients) than that treated with the fractional Er:glass system, and 5 out of 7 patients also felt that the Er:YAG treated side was superior. In addition, the clinicians felt that the visibility of the excision line was significantly lower in the ablative fractional laser treated side.

Conclusions: Although the results of the present study suggested that the fractional ablative Er:YAG laser was superior in scar prevention efficacy to the fractional nonablative Er:glass laser, the patient population was very small. Further controlled studies with larger patient populations are warranted to confirm the superiority between ablative and non-ablative fractional lasers, optimize laser parameters for scar prevention and to understand the cellular mechanisms that underlie laser-induced wound healing.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
TREATMENT OF PERIORBITAL WRINKLES WITH 1550- AND 1565-nm Er:GLASS FRACTIONAL PHOTOTHERMOLYSIS LASERS: A SIMULTANEOUS SPLIT-FACE TRIAL

J.Y. Jung,¹ S.B. Cho,¹ H.J. Chung,² J.-U. Shin,¹ K.H. Lee,¹ and K.Y. Chung¹

¹: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea; and ²: Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA

Objective: This study aimed to compare the clinical efficacies of 1550- and 1565-nm Er:glass lasers in the treatment of periorbital wrinkles and to evaluate histological changes after treatment.

Methods: Twenty patients received five treatments each at 3-week intervals. The right periorbital area was exposed to the 1550-nm Er:glass laser and the left periorbital area was exposed to the 1565-nm Er:glass laser. Clinical improvement was evaluated by two blinded physicians who assessed comparative photographs using a four-point scale at baseline and 3 months after the final treatments. Skin biopsies were performed in five volunteers before treatment and at 3 months after the final treatment.

Results: The mean improvement scores 3 months after treatment with the 1550- and 1565-nm Er:glass lasers were 2.25 ± 0.62 and 2.28 ± 0.59 respectively. Histological examination revealed increased epidermal thickening and decreased solar elastosis 3 months after the final laser treatments.

Conclusions: Both 1550- and 1565-nm Er:glass lasers are safe and effective modalities in the treatment of periorbital wrinkles with no significant differences between the two lasers.
Background and Objectives: Platelet-rich plasma (PRP) is an autologous concentration of human platelets contained in a small volume of plasma and has recently been shown to accelerate wound healing and rejuvenate aging skin. The current study was conducted to determine whether there are additional effects of PRP combined with fractional laser therapy.

Materials and Methods: Twenty-two Korean women underwent three sessions of fractional laser; 11 were treated with topical application of PRP combined with fractional laser. Evaluations were done at baseline and 1 month after the final treatment. The outcome assessments included subjective satisfaction scale; blinded clinical assessment; and the biophysical parameters of roughness, elasticity, skin hydration, and the erythema and melanin index. Biopsies were analyzed using hematoxylin and eosin, Masson-trichrome, and immunohistochemistry for matrix metalloproteinase-1.

Results: PRP combined with fractional laser increased subject satisfaction and skin elasticity and decreased the erythema index. PRP increased the length of the dermoepidermal junction, the amount of collagen, and the number of fibroblasts.

Conclusions: PRP with fractional laser treatment is a good combination therapy for skin rejuvenation. Keratinocyte and fibroblast proliferation and collagen production can explain the capacity of PRP to increase dermal elasticity.
Background: Topical and systemic drugs have been successfully used in the treatment of acne. However, many people are concerned about the side effects of these medicines, especially the childbearing women. Recent reports demonstrated that sequential treatment with laser- and light-based devices led to a clinical improvement in acne. Recently, we witnessed and experienced an example of improvement of inflammatory acne lesions during the treatment of acne scars using a 1,550-nm non-ablative fractional erbium-glass laser.

Objective: This study was designed to investigate the efficacy and safety of 1,550-nm non-ablative fractional erbium-glass laser in the treatment of facial inflammatory acne vulgaris.

Methods: Eleven patients with facial inflammatory acne vulgaris were recruited. These patients received three treatment sessions at a 3-week interval. Inflammatory lesions were counted before and after treatment. The sebum production was quantified using a Sebumeter®. We graded the patients’ self-assessment and the investigator’s global assessment using a five-point scale also used by the dermatologist. We additionally investigated the histological changes after the treatment sessions, and the adverse effects during the study.

Results: Treatment with 1,550-nm non-ablative fractional erbium-glass laser was well tolerated, resulting in the reduction of inflammatory lesions by 61% ($p < 0.05$). However, the reduction in sebum production from the baseline was not statistically significant. Histopathologic examination of the inflammatory lesions showed a marked decrease in the dermal inflammatory cell infiltration around the perivascular and peri-appendageal area and the sebaceous glands became smaller after laser treatments. Side-effects were minimal, and were resolved within a few days.

Conclusions: 1,550-nm non-ablative fractional erbium-glass laser was safe and effective for the treatment of facial inflammatory acne lesions.
TREATMENT OF ALOPECIA AREATA WITH FRACTIONAL PHOTOTHERMOLYSIS LASER

Kwang Ho Yoo,1 Myeung Nam Kim,1 Beom Joon Kim,1 and Chan Woong Kim2

Departments of 1: Dermatology; and 2: Emergency Medicine, College of Medicine, Chung-Ang University, Seoul, Korea

Background and Aims: Many studies have documented an abnormal cell-mediated immune reaction in alopecia areata (AA) resulting in premature catagen and telogen phases. Even if cells re-enter anagen, the abnormal immune reaction truncates the anagen phase giving miniaturized hair follicles. The treatment of AA depends on the severity and extent of the disease and the more aggressive treatments frequently show side effects and a relatively high relapse rate. Recently, laser treatment with different wavelengths has been used to manage this problem, including, even more recently, fractional photothermolysis. We report herein on the results of a preliminary subject with AA treated using a fractional laser.

Subject and Methods: A 35-year-old male presented to our hospital with a 2-year history of multiple large lesions of alopecia areata on the frontal region of the scalp. Two years of treatment with many different modalities failed to induce hair regrowth. He was treated weekly with a fractional laser (10-15 mJ/pulse, density 300 spots/cm²), for 24 weeks. Two passes per session were performed.

Results: The treatment was well tolerated with no reported side effects. Hair growth was already observed after 1 month. After 3 months, lesions were covered with 30 to 40% of mostly pigmented terminal hair. After 6 months of fractional laser therapy, there was complete regrowth in all lesions. No relapse was observed during the follow-up period of 6 months. For this reason, the patient was satisfied with the treatment outcome.

Conclusions: The mechanism of the fractional laser in inducing hair regrowth in AA lesions is thought to be the induction of T-cell apoptosis and enhancement of hair growth, with de novo hair follicular neogenesis shown to originate from both follicular and from non-hair follicle stem cells. Fractional laser could also induce minor trauma and the wound healing process which might facilitate hair growth. Until now, we have no idea which cytokines are key inducers of these interesting phenomena. We hope this puzzle will be solved in the near future by physicians and scientists who major in hair biology.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
THE EFFECT OF A 1550 nm FRACTIONAL ERBIUM-GLASS LASER IN FEMALE PATTERN HAIR LOSS

G-Y Lee, S-J Lee, and W-S Kim

Department of Dermatology, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Korea

Background: Female pattern hair loss (FPHL) is the most common cause of hair loss in women, and its prevalence increases with advancing age. Affected women may experience psychological distress and social withdrawal. A variety of laser and light sources have been tried for treatment of hair loss, and some success has been reported.

Objective: The purpose of this study was to determine the efficacy and safety of a 1550 nm fractional erbium-glass laser in treatment of female pattern hair loss.

Patients and Methods: Twenty eight ethnic South Korean patients with varying degrees of FPHL were enrolled in the study. Patients received ten treatments with a 1550 nm fractional Er:Glass Laser (Mosaic, Lutronic Co., Ltd, Seoul, South Korea) at 2-weeks intervals using the same parameters (5-10 mm tip, 6 mJ pulse energy, 800 spot/cm² density, static mode). Phototrichogram and global photographs were taken at baseline and at the end of laser treatment, and analysed for changes in hair density and hair shaft diameter. Global photographs underwent blinded review by three independent dermatologists using a 7-point scale. Patients also answered questionnaires assessing hair growth throughout the study. All adverse effects were reported during the study.

Results: Twenty seven patients completed a 5-month schedule of laser treatment. One patient was excluded during treatment due to occurrence of alopecia areata. At the initial visit, mean hair density was 100 ± 14 cm², and mean hair thickness was 58 ±12 m. After 5 months of laser treatment, hair density showed a marked increase to 157 ± 28 cm² (P < 0.001), and hair thickness also increased to 75 ± 13 m (P < 0.001). Global photographs showed improvement in 24 (87.5%) of the 27 patients. Two patients (7.4%) reported mild pruritus after laser treatment; however, these resolved within 2 h.

Conclusions: A 1550 nm fractional erbium-glass laser irradiation may be an effective and safe treatment option for women with female pattern hair loss.
Background: Various trials have been conducted on the management of male pattern hair loss (MPHL). A variety of laser and light sources have been used for the treatment of MPHL.

Objective: To understand the effects of a 1,550-nm fractional erbium-glass laser on the hair cycle in an alopecia mouse model and to study the clinical effects of the same laser used as treatment for MPHL.

Materials and Methods: Irradiation was applied to the shaved skin of C3H/HeN mice using various energy and density settings and varied irradiation intervals. In a clinical pilot study involving human subjects, 20 participants were treated over five sessions at 2-week intervals. A fractional photothermolysis laser was used at the energy of 5 mJ and a total density of 300 spots/cm².

Results: In the animal study, the hair stimulation effects were dependent upon the energy level, density, and irradiation interval. The anagen conversion of hair and the increase in Wnt 5a, β-catenin signals were observed. In the human pilot study, incremental improvements in hair density and growth rate were observed.

Conclusions: This pilot study showed that a 1,550-nm fractional erbium-glass laser might induce hair growth, but more intensive studies are required to clarify the clinical applications of this treatment.
EFFECTS OF ABLATIVE 10,600-nm CARBON DIOXIDE FRACTIONAL LASER THERAPY ON SUPPURATIVE DISEASES OF THE SKIN: A CASE SERIES OF 12 PATIENTS

Sung Bin Cho,1 Jin Young Jung,1 Dong Jin Ryu,1 Sang Ju Lee,2 and Ju Hee Lee1

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul; and 2: Yonsei Star Skin & Laser Clinic, Seoul, Korea

Background and Objectives: We have used an ablative 10,600 nm carbon dioxide fractional laser system (CO₂ FS) for suppurative diseases in order to attempt improvement. The purpose of our study was to demonstrate the effect of CO₂ FS on the course of inflammatory reactions in suppurative diseases.

Materials and Methods: We reviewed a total of 12 Korean patients with suppurative diseases of the skin who had a history of treatment failure with several therapeutic modalities as well as active and multiple inflammatory lesions at the time of CO₂ FS treatment.

Results: Improvement scores considering the number of suppurative lesions revealed that 3 of the 12 patients demonstrated clinical improvement of grade 4. Seven had clinical improvement of grade 3 and two showed improvement of grade 2. Improvement scores in severity were also evaluated; 2 of the 12 patients showed clinical improvement of grade 4. Six demonstrated clinical improvement of grade 3 and four had clinical improvement of grade 2. No patient showed a worsening of suppurative lesions.

Conclusions: Our observations demonstrated that the use of CO₂ FS did not make active suppurative lesions worse, and might have a therapeutic effect on suppurative diseases and their related scars.
LOWER-FLUENCE, HIGHER-DENSITY VERSUS HIGHER-FLUENCE, LOWER-DENSITY TREATMENT WITH A 10,600-nm CARBON DIOXIDE FRACTIONAL LASER SYSTEM: A SPLIT-FACE, EVALUATOR-BLINDED STUDY

Jin Young Jung,¹ Ju Hee Lee,¹ Dong Jin Ryu,¹ Sang Ju Lee,² Dongsik Bang,¹ and Sung Bin Cho¹

¹: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul; and ²: Yonsei Star Skin and Laser Clinic, Seoul, Korea

Background: Adequate laser settings in the treatment of scars using a carbon dioxide fractional laser system (CO₂ FS) have not been established.

Objective: To compare the efficacy and safety of low-fluence, high-density with high-fluence, low density treatment with CO₂ FS on acne scars and enlarged pores.

Methods: Ten patients with mild to severe atrophic acne scars and enlarged pores were enrolled. Half of each subject face was treated with a single session of CO₂ FS with a fluence of 70mJ and a density of 150 spots/cm²; the other half was treated with a fluence of 30 mJ and a density of 250 spots/cm².

Results: Follow-up results 3 months after a single low-fluence, high-density treatment with CO₂ FS showed that four of 10 participants had clinical improvement of 51% to 75% from baseline. After the high-fluence, low-density CO₂ FS treatment, five of 10 patients demonstrated marked clinical improvements of more than 76%.

Conclusions: Higher-energy, lower-density laser settings seem to be more effective than lower energy, higher-density settings for acne scars and enlarged pores, although our results do not constitute a conclusive comparison of the two different modes of CO₂ FS.
THE COMBINATION OF THE COPPER BROMIDE LASER, A 10,600 nm ABLATIVE CARBON DIOXIDE LASER AND INTRALESIONAL TRIAMCINOLONE FOR THE TREATMENT OF HYPERTROPHIC THYROIDECTOMY SCARS

JH Kim,1 HJ Kim,2 YH Kim,3 SH Lee,1 MR Roh,1 CS Park,4 H-S Chang,4 SH Lee1

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul; 2: Department of Dermatology, Seoul Medical Center, Seoul, Korea; 3: Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA and 4: Department of Surgery, Yonsei University College of Medicine, Seoul, Korea

Background and Aims: Hypertrophic scars are a common cosmetic problem caused by benign hyperproliferative growths of dermal collagen. Intralesional injections with triamcinolone (TA) have been a standard treatment for keloids and hypertrophic scars. The 10,600 nm ablative carbon dioxide laser (AFL) is an effective treatment option for skin rejuvenation and scarring. The copper bromide laser (578 nm, CBL) improves scar remodeling and re-epithelialization of striae. The purpose of our study was to investigate the efficacy and safety of the combined modalities of CBL, AFL and TA for the treatment of hypertrophic thyroidectomy scars.

Patients and Methods: Thirty patients (4 male, 26 female, ages ranging from 21 to 55 years, Fitzpatrick skin types III or IV) with hypertrophic scarring post thyroidectomy participated in the study. A combination of three different treatment modalities was used: AFL, CBL and intralesional TA solution. Four possible treatment options were set up: AFL, AFL + TA, CBL and CBL + TA. All patients underwent two treatment sessions separated by a 4-week interval. The primary outcomes of interest were improvements in vascularity, thickness, pliability, pigmentation and global assessment. We used a 4-point scoring system: grade 1 (<25% improvement), 2 (26-50% improvement), 3 (51-75% improvement) and 4 (76-100% improvement).

Results: Significant improvements were observed in all categories except in vascularity, for which the CBL appeared superior, which suggested that the CBL could deal with the erythema associated with TA. On the other hand, overall improvement in thickness and pliability was significantly superior in the AFL and AFL + TA groups, but TA is associated with side effects like telangiectasia and residual erythema.

Conclusions: Our results demonstrate that a combination of CBL, AFL and intralesional TA may provide a new treatment option for hypertrophic thyroidectomy scars. AFL on its own had good efficacy, but long-term follow-up and larger patient populations are needed for re-evaluation of scar changes, including the incidence of recurrence.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
EARLY POSTOPERATIVE TREATMENT OF THYROIDECTOMY SCARS USING A FRACTIONAL CARBON DIOXIDE LASER

Jin Young Jung, Jong Ju Jeong, Hyo Jin Roh, Su Hyun Cho, Kee Yang Chung, Won Jai Lee, Kee-Hyun Nam, Woong Youn Chung, and Ju Hee Lee

1: Department of Dermatology and Cutaneous Biology Research Institute; 2: Department of Surgery; and 3: Department of Plastic and Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Korea

Background: Ablative carbon dioxide fractional laser systems (CO₂ FS) have been effectively used to improve the appearance of scarring after surgical procedures, but an optimal treatment time has not been established.

Objective: To evaluate the efficacy and safety of CO₂ FS in early postoperative thyroidectomy scars.

Methods: Twenty-three Korean women with thyroidectomy scars were enrolled in this study. All patients underwent a single session of two passes of a CO₂ FS with a pulse energy setting of 50 mJ and a density of 100 spots/cm² 2 to 3 weeks after surgery.

Results: Mean Vancouver Scar Scale (VSS) scores were statistically significantly lower after laser treatment. Three months after CO₂ FS treatment of thyroidectomy scarring, 12 of 23 participants showed clinical improvement of more than 51% from 2 to 3 weeks after surgery. The mean grade of clinical improvement based on independent clinical assessment was 2.6 ± 0.9.

Conclusion: Early postoperative CO₂ FS treatment of thyroidectomy scars is effective and safe.
A RANDOMIZED CONTROLLED TRIAL

You Jin Yang and Ga-Young Lee

Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Korea

Background: Striae distensae are atrophic dermal scars with overlying epidermal atrophy causing significant cosmetic concern. Although a variety of laser and light sources have been used for the treatment of striae distensae, to date no definite old standard treatment modality has been determined.

Objective: To assess and compare the efficacy and safety of nonablative fractional photothermolysis and ablative CO₂ fractional laser resurfacing in the treatment of striae distensae.

Methods: Twenty-four ethnic South Korean patients with varying degrees of atrophic striae alba in the abdomen were enrolled in a randomized blind split study. The patients were treated with 1,550 nm fractional Er:Glass laser and ablative fractional CO₂ laser resurfacing. Each half of the abdominal lesion was randomly selected and treated three times at intervals of 4-weeks using the same parameters. Digital photography was conducted and skin elasticity and the width of the widest striae in each subject were measured at the baseline and 4 weeks after the final treatment. Clinical improvement was assessed by comparing pre- and post-treatment clinical photographs by two blinded physicians and participant satisfaction rates were evaluated. Skin biopsies were taken from three participants. All adverse effects were reported during the study.

Results: Although they do not statistically differ, both treatments with nonablative fractional laser and ablative CO₂ fractional laser showed a significant clinical and histopathologic improvement of striae distensae over pretreatment sites.

Conclusions: These results support the use of nonablative fractional laser and ablative CO₂ fractional laser as effective and safe treatment modalities for striae distensae of Asian skin. However, neither treatment showed any greater clinical improvement than the other treatment.
THE EFFECT OF SUCCINYLATED ATELOCOLLAGEN AND ABLATIVE FRACTIONAL RESURFACING LASER ON STRIAE DISTENSAE

Jung U Shin,¹ Mi Ryung Roh,¹ Dong Kyun Rah,² Kyoung Ae Nam,¹ Hwal Suh,³,⁴ and Kee Yang Chung¹,⁴

¹: Department of Dermatology and Cutaneous Biology Research Institute; ²: Department of Plastic Surgery; ³: Department of Medical Engineering, Yonsei University College of Medicine, Seoul; and ⁴: BK 21 Research Team of Nanobiomaterials for the Cell-based Implants, Seoul, South Korea

Background and Aims: Striae distensae are dermal atrophic scars with epidermal thinning and decreased collagen and elastic fiber. There is no old standard treatment modality in the treatment of striae distensae. Collagen is a major extracellular matrix component and is important in wound healing. The ablative CO₂ fractional laser is effective in various cutaneous scars and this study attempted to evaluate the effect of succinylated atelocollagen and ablative CO₂ fractional laser in the treatment of striae distensae.

Subjects and Methods: Participants were divided into two groups and received three laser treatments at a 4-week interval. Clinical improvement was evaluated by participants and two blinded physicians by observing the comparative photographs. Skin biopsies were randomly taken from six participants.

Results: The ablative fractional resurfacing laser was effective in the clinical improvement of striae distensae. Statistically significant differences were partly observed between the collagen and placebo groups. Clinical improvement scored by doctors showed more improvement in the collagen group. However, scoring by participants did not show significant differences between the collagen and placebo groups.

Conclusions: In conclusion, the ablative fractional resurfacing laser is effective in the treatment of striae distensae and succinylated atelocollagen may also be effective for striae distensae treatment. However, to prove the effect of succinylated atelocollagen, further research with a larger group of participants is needed.
Atrophic facial acne scarring is a widely prevalent condition that can have a negative impact on patients' quality of life. The appearance of these scars is often worsened by the normal effects of aging. A number of options are available for the treatment of acne scarring, including chemical peeling, dermabrasion, ablative or nonablative laser resurfacing, dermal fillers, and surgical techniques such as subcision or punch excision. Depending on the type and extent of scarring, a multimodal approach is generally necessary to provide satisfactory results. Resurfacing techniques such as fractionated CO₂ lasers correct surface irregularities, long-lasting dermal fillers address the volume loss resulting from acne, and sub-superficial musculoaponeurotic system (SMAS) face-lift procedures counter the soft tissue laxity and ptosis associated with aging. This article briefly reviews the evolution of individual approaches to treating atrophic acne scarring, followed by case examples illustrating results that can be achieved using a multimodal approach. Representative cases from patients in their 30s, 40s, and 50s are presented. In the author clinical practice, multimodal approaches incorporating fractionated laser, injectable poly-L-lactic acid, and sub-SMAS face-lift procedures have achieved optimal aesthetic outcomes, high patient satisfaction, and durability of aesthetic effect over time.
FRACTIONAL TRANSEPIDERMAL DELIVERY:
A HISTOLOGICAL ANALYSIS

Helmut Beltraminelli, Nathalie Dietrich and Thomas Hunziker

Department of Dermatology, Inselspital University Hospital of Bern, Bern, Switzerland

Background: In autologous cell therapy, e.g. in melanocyte transplantation for vitiligo, a minimally invasive mode of transepidermal delivery of the isolated cells is of crucial importance to reduce potential side effects such as infections and scarring as well as to minimize the duration of sick leave.

Objectives: To compare the characteristics of the microscopic treatment zones induced by ablative fractional CO₂ laser and by microneedle treatment in ex vivo human breast skin.

Results: Ablative fractional CO₂ laser treatment resulted in superficial, mainly epidermal defects reaching at most the upper papillary dermis (0.1-0.3 mm), covered by a thin eschar and coated by a small zone of collagen denaturation. Tissue injury characteristics depended on spot size as well as the energy delivered. Microneedle treatment led to thin vertical skin fissures, reaching the mid-dermis (up to 0.5 mm) and injuring dermal blood vessels, but without surrounding tissue necrosis.

Conclusions: Both technologies are able to create small epidermal defects which allow to deliver isolated cells such as melanocytes to an epidermodermal site, with microneedle treatment having the advantage of lacking devitalized tissue and eventually enabling vascular access for the transplanted cells.
TARGETED LASER RECONSTRUCTION OF SKIN SCARS USING 10,600 nm CARBON DIOXIDE FRACTIONAL LASER

Sang Ju Lee,¹ Min Ju Choi,² Won Soon Chung,¹ and Sung Bin Cho²

¹: Yonsei Star Skin & Laser Clinic, Seoul; and 2: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

Background and Aims: Atrophic scars, especially acne scars, have been treated with several modalities, including surgical procedures, resurfacing procedures and injection of dermal fillers or autologous fat tissues. The chemical reconstruction of skin scars (CROSS) method uses a sharpened wooden applicator or syringes to deliver trichloroacetic acid in higher concentration deeply into the atrophic scars. We briefly introduce herein our simple method of a modified CROSS technique, termed targeted laser reconstruction of skin scars, using a 10,600 nm carbon dioxide fractional laser system (CO₂ FS) with higher pulse energy for atrophic scars.

Patients and Methods: All patients were treated with three to five sessions of CO₂ FS, in which only the atrophic scar tissues are targeted, unlike full-face resurfacing. Following topical local anaesthesia, high-energy, low-density fractional CO₂ laser energy was applied (100 mJ pulse energy, 100 spots/cm² giving coverage of 8.6%, maximum ablation depth of around 1,236.3 μm). A moisturizer was applied several times daily for a few days after each treatment session to promote wound healing and prevent dryness, together with a UVA/B sunscreen.

Results: Post-therapy crusting spontaneously improved in 5 days, and pronounced posttherapy erythema usually lasted less than 1 week. Rather than treating the entire face, lesions could be conveniently treated with CO₂ FS by targeted laser reconstruction of skin scars method, which shortens procedure time, post-treatment bleeding, oozing and recovery time. Patients expressed high satisfaction with the results.

Conclusions: Optimized, prospective studies should be conducted in the future to confirm the effectiveness of our method, however based on our results we believe that the targeted laser reconstruction of skin scars using high-energy, low-density CO₂ FS can be easily and widely used for various types of atrophic scar.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
EVALUATION OF FRACTIONAL CO\textsubscript{2} LASER EFFICACY IN ACNE SCAR

Simin Saryazdi and Azadeh Mohebbi

Department of Dermatology, Afzalipour Hospital, Kerman, Iran

Introduction: Acne scars form after severe episodes of active acne in the teen and early adult years. Several treatment options have been used for depressed acne scars such as punch grafting, punch excision, carbon dioxide (CO\textsubscript{2}) laser and so on, but results have been inconsistent. More recent studies have shown that laser skin resurfacing, such as with the ablative fractional CO\textsubscript{2} laser, can effectively treat depressed acne scars. In the present study, we investigated the efficacy of the fractional ablative CO\textsubscript{2} laser in acne scar.

Methods: In this clinical trial we used an ablative fractional CO\textsubscript{2} laser (eCO2 Lutronic Corp., Goyang, South Korea; FDA approved) in 15 female cases with an age range of 20-40 years. All patients underwent 3 sessions of laser resurfacing at one-month intervals. In the first session we used the laser with the 120 tip at a density of 150 spots/cm2, and pulse energy of 70 J/cm2 with a 4 mm diameter spot in static mode on the depressed acne scars. In the second and third sessions, the same 120 tip was applied over the areas treated in the previous session with a density of 100 spots/cm2 pulse energy of 70 J/cm2 using the 12 mm square spot size in the static mode. Photographs were taken at baseline, before every treatment session and at 3 months after the final session. The patients completed questionnaires concerning the percentage of improvement, in consultation with an independent dermatologist. Finally, the clinical photography was compared by an independent panel of clinicians who objectively evaluated the efficacy of ablative fractional CO\textsubscript{2} laser treatment of acne scars.

Results: Objective and subjective improvement after the 3rd session was estimated about 20-70% and 30-70%, respectively, without any erythema, permanent hyperpigmentation or other adverse effects. In the long-term follow-up, these results continued to improve but one limitation of the study was that this long-term improvement was not recorded formally. The most important point for the patients was that they were able to resume their social and work commitments and all aspects of activities of daily living (ADL) from 4 to 7 days after treatment.

Conclusions: Ablative fractional CO\textsubscript{2} laser resurfacing can be used as a safe and efficacious method to treat depressed acne scars, but further studies will help define the optimal treatment parameters and other potential indications for this device.
ABLATIVE FRACTIONAL CO₂ LASER MAY BE A NOVEL TREATMENT FOR TATTOO ALLERGIC REACTION: A CASE REPORT

Behrooz Barikbin,¹ Zahra Akbari,¹,² and Somayeh Hejazi³

¹: Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran; ²: Department of Dermatology, Razi hospital, Tehran University of Medical Sciences, Tehran; and ³: Department of Dermatology, Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Background and Aims: Cosmetic tattooing has become a popular method to enhance the appearance of eyebrows, for example. However, an allergic reaction between the tattoo pigments and other substances, for example botulinum toxin (BTA), can occasionally occur for unknown reasons, and allergic reactions have been reported on attempted removal of these and other tattoos with laser. The present case report investigated the treatment with an ablative fractional CO₂ laser of the allergic reaction between tattoo pigment and a BTA injection.

Case and Methods: A 47-year-old female, who, some years previously, had her eyebrows tattooed, suddenly and unexpectedly developed a severe facial allergic reaction to a BTA injection, even though she had been receiving these almost twice per year for 5 years. As part of the allergic reaction, the areas of tattoo pigment became very swollen, pruritic and painful, and did not respond to corticosteroid treatment. Further intralesional triamcinolone injections over 8 months failed to improve the problem. When she came to our clinic, we noted red eczematous and indurated papules and plaques confined to her eyebrows, almost resembling a keloid scar, with the rest of her skin appearing normal. We applied an ablative fractional CO₂ laser once a week for 7 sessions, three weeks between sessions, with no concurrent therapy other than mineral water spray and zinc oxide ointment.

Results: One possible limitation in this report which must be stated first is that the etiology of the allergic reaction was not histopathologically identified. The patient had no problems with the treatment, pain was not an issue and side effects were mild and transient. Gradual flattening of the allergic papules and plaques in the treated areas appeared as treatment progressed, together with lightening of the tattoo itself. One month after the final treatment, near total flattening of the tattoo allergic reaction and depigmentation of the ink was observed which was maintained without further treatment over a further three-month period. The patient was highly satisfied.

Conclusions: Ablative fractional CO₂ treatment could offer an alternative treatment for allergic-reaction associated raised papules and areas of plaque in tattooed areas which have failed to respond to corticosteroid intervention. Further studies are necessary to confirm our results and ascertain the ideal parameters.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
ABLATIVE FRACTIONATED CO₂ LASER RESURFACING
FOR THE FACE AND NECK

Usha P. Reddy and Julie A. Woodward

Department of Ophthalmology/Division of Oculoplastic and Reconstructive Surgery, Duke Eye Center/
Duke University Medical Center, Durham, North Carolina, USA

Introduction: There has been little information reported on the use of fractionated CO₂ laser resurfacing of the neck. We describe our initial experience with conservative treatment on the neck with concurrent treatment to the face.

Materials and Methods: We retrospectively reviewed all cases of full-face and neck ablative fractionated CO₂ laser resurfacing at our institution performed for the treatment of photodamage.

Results: Eighteen consecutive patients were included with at least 3 months of follow-up. All neck settings were lower than the face settings. Eleven patients were treated with a 120 μm spot size and 7 patients with a 300 μm spot size. Average time of reepithelialization was 5 to 7 days for the full face and 7 to 14 days for the neck. Similarly for erythema resolution, patients reported an average of 4 weeks for improvement versus 6 weeks for the neck area. Two patients reported being dissatisfied with the procedure, and all others were happy with neck results. Complications included 1 case of herpes simplex virus reactivation with perioral lesions, 3 cases of postinflammatory hyperpigmentation of the face, and 1 case of postinflammatory hyperpigmentation with persistent erythema of the neck.

Conclusions: Fractionated CO₂ laser treatment to the neck involved delayed healing times despite the use of lower laser settings.
DEPTH OF eCO2 FRACTIONAL RESURFACING WITH 3 DIFFERENT SPOT SIZES ON FACIAL SKIN IN VIVO

Amina Husain, Usha P. Reddy, Thomas Cummings, Michael J. Richard, and Julie A. Woodward

Duke University Medical Center, Durham, North Carolina, USA

Introduction: To estimate the depth of laser vaporization of microthermal zones and surrounding thermo-coagulation with the eCO2 laser.

Materials and Methods: Pretragal skin was lased with 3 spot sizes (120, 300, and 1000 μm), and each spot size was lased at 5 different fluences. The 15 different lased areas were then biopsied.

Results: For the 120 μm tip, as the power increased from 80 to 160 mJ, the depth of laser penetration increased from 520 to 900 μm. Total coagulative effect increased from 720 to 1000 μm. For the 300 μm tip, as the power increased from 100 to 180 mJ, the depth of laser penetration increased from 200 to 550 μm. Total coagulative effect increased from 320 to 720 μm. For the 1 mm tip, as power increased from 60 to 220 mJ, the depth of laser penetration hovered around 125 to 150 μm. Total coagulative effect increased from 150 to 350 μm.

Conclusion: The 120 μm tip allows for the deepest penetration into facial skin with the least amount of surface area ablated. The 300 μm tip allows for an intermediate level of penetration into the dermis and an intermediate amount of surface ablation. The 1000 μm tip can be used to fully ablate epidermis as in traditional laser resurfacing. Traditional CO2 lasers ablate the entire epidermis, which provides excellent results at the price of prolonged healing times and erythema. These lasers worked with larger spot sizes, often as much as 2.25 mm, and at fluences of about 7-8 J/cm². Fractional CO2 lasers focus the same amount of energy into the skin in microscopic thermal zones as small as 120 μm, which create fluences of nearly 100 times those of traditional lasers. This results in tissue ablation past the epidermis and through the papillary dermis into the reticular dermis in these narrow zones while leaving the surrounding epidermis intact. These areas of undisturbed tissue allow for more rapid healing. The theory is that the deep penetration into the reticular dermis allows for deep collagen neogenesis, which is good for rhytid improvement while maintaining a rapid healing time.
TREATMENT OF SYRINGOMA USING AN ABLATIVE 10,600-nm CARBON DIOXIDE FRACTIONAL LASER: A PROSPECTIVE ANALYSIS OF 35 PATIENTS

Sung Bin Cho,1 Hee Jung Kim,2 Seongmin Noh,1 Sang Ju Lee,3 Young Koo Kim,3 and Ju Hee Lee1

1: Department of Dermatology and Cutaneous Biology Research Institute, College of Medicine, Yonsei University, Seoul; 2: Department of Dermatology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul; and 3: Yonsei Star Skin and Laser Clinic, Seoul, Korea

Background: Treatment of syringoma aims to destroy the dermal tumor using methods that can include surgical excision, electrodessication, cryosurgery, chemical peeling, and laser ablation, but complete removal of syringomas is often unsuccessful, and recurrence occurs frequently.

Objective: To investigate the therapeutic efficacy of an ablative 10,600-nm carbon dioxide fractional laser system (CO2 FS) for the treatment of periorbital syringomas.

Methods: Thirty-five patients with periorbital syringomas were treated with two sessions of CO2 FS at 1-month intervals. Laser fluences were delivered in two or three passes over the lower eyelids, using a pulse energy of 100 mJ and a density of 100 spots/cm². Clinical improvement was assessed by comparing preand post-treatment clinical photographs and patient satisfaction rates. We examined the histological features of human periorbital syringomas treated with CO2 FS.

Results: Evaluation of clinical results 2 months after treatment showed that 15 of the 35 patients (42.9%) demonstrated marked (51-75%) clinical improvement, 12 (34.3%) had moderate (26-50%) clinical improvement, five (14.3%) showed minimal (0-25%) improvement, and three (8.6%) showed near total (>75%) improvement. Clinical improvement scores were less at 4 months after the second CO2 FS treatment (not statistically significant). The mean maximal depth of the necrotic column was 1,236.3 μm. A specimen obtained from the infraorbital area immediately after treatment showed formation of necrotic columns on the interfollicular skin.

Conclusion: The use of CO2 FS can have a positive therapeutic effect on periorbital syringomas.
A CASE OF CONGENITAL MELANOCYTIC NEVUS CLINICALLY IMPROVED BY FRACTIONAL CARBON DIOXIDE LASER TREATMENT

You Jin Yang, Young Jun Choi, Jae-Hui Nam, Hee Jung Kim, Gayoung Lee and, Won-Serk Kim

Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Korea

Congenital melanocytic nevi are cosmetically disfiguring, pigmented skin lesions that are present at birth. A 61-year-old man presented with an asymptomatic 3×2 cm sized black-colored patch involving the helix, antihelix and triangular fossa of the left auricle, and the lesion had been there since birth. The patient refused surgical removal and so we tried fractional carbon dioxide laser treatment for cosmetic improvement only. Clinical improvement was observed after 18 treatment sessions. We report herein on a case of congenital melanocytic nevus within the auricle, and this was treated with fractional carbon dioxide laser.
COMBINATION TREATMENT OF 10,600 nm ABLATIVE CARBON DIOXIDE FRACTIONAL LASER AND NARROW BAND UVB IN REFRACTORY NON-SEGMENTAL VITILIGO: A PROSPECTIVE, RANDOMIZED HALF-BODY COMPARATIVE STUDY

J. Shin, J.S. Lee, S.-K. Hann and S.H. Oh

Korea Institute of Vitiligo Research & Drs. Woo and Hann Skin Center, Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

Background: Vitiligo is a common acquired depigmentation disorder caused by the loss of melanocytes. Despite the numerous treatment modalities that are available for vitiligo, responses to treatment are still unsatisfactory. For this reason, new treatment modalities and approaches are needed.

Objectives: The effects of fractional CO₂ laser therapy followed by systemic NB-UVB phototherapy on non-segmental vitiligo (NSV) were investigated as a prospective and randomized left-right comparative study.

Methods: A total of 10 patients with NSV who presented with symmetrical vitiligo lesions showing no further improvement despite more than one year of conventional treatment were enrolled. Two sessions of half-body CO₂ fractional laser therapy were performed at a two-month interval. NB-UVB phototherapy was then administered to the entire body 5 days after each fractional laser treatment twice a week, increasing the dosage incrementally by 15% at each session. Objective clinical assessments were made by two blinded dermatologists using a quartile grading scale, and the patients overall satisfaction was evaluated using a 10-point visual analogue scale.

Results: Two months after the last treatment, mean improvement scores, assessed by physicians, were significantly higher for those treated with half-body fractional CO₂ laser therapy followed by NB-UVB, compared to those treated with NB-UVB alone (p=0.034). In addition, according to subjective assessment, the half-body laser treatment combined NB-UVB phototherapy showed significantly higher improvements, compared to NB-UVB treatment alone (p=0.023). Noticeable adverse events, such as infection, scarring, and Koebner phenomenon, were not found in any patient.

Conclusions: This study suggests that fractional CO₂ laser therapy followed by NB-UVB could be used effectively and safely as an alternative modality for the treatment of refractory vitiligo.
THE EFFECT OF FRACTIONAL CARBON DIOXIDE LASERS ON IDIOPATHIC GUTTATE HYPOMELANOSIS: A PRELIMINARY STUDY

J Shin,1 M Kim,1 SH Park,2 and SH Oh1

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine; and
2: JNA Dermatology Clinic, Seoul, Korea

Background: Idiopathic guttate hypomelanosis (IGH) is a commonly acquired leukoderma that is characterized by discrete, round or oval porcelain-white macules around 2 mm in diameter that increase in number with age. A variety of therapies with variable success rates, including cryotherapy, superficial abrasion and topical retinoids are currently being used.

Objectives: The effects of fractional CO2 laser therapy on IGH were investigated in this pilot study. Patients and Methods: A total of 40 patients with IGH were enrolled. The hypopigmented lesions were treated using a 10,600 nm carbon dioxide fractional laser (CO2 FL). Two months after a single treatment, physicians clinical assessments were performed and the patients overall satisfaction was evaluated.

Results: The mean age of enrolled patients was 57.5 ± 10.9 years and the gender ratio was 7:33. The face was the most commonly treated area, although the extremities are epidemiologically the most frequently affected areas. Two months after treatment, objective assessments performed by two independent dermatologists indicated more than 50% improvement in 36 patients (90%), compared with baseline. In addition, 33 patients (82.5%) were very satisfied or satisfied with just one session of CO2 FL treatment. Although a few patients complained of long-standing erythema and postinflammatory hyperpigmentation, these problems spontaneously resolved within 2 months after the assessments. No other noticeable side effects were observed.

Conclusions: CO2 FL might be a very convenient and effective modality for treating IGH without significant side effects.
EVALUATION OF MORPHOLOGICAL CHANGES IN DEGENERATIVE CARTILAGE USING 3-D OPTICAL COHERENCE TOMOGRAPHY

Jong-In Youn

Department of Biomedical Engineering, College of Health and Medical Science, Catholic University of Daegu, Republic of Korea

Background: Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease.

Current systems: Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images.

3-D OCT: This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of 6×3.2×2.5 mm. The axial resolution was 8 μm in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen.

Conclusions: The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.
SUPERIOR LIPOLYTIC EFFECT OF THE 1,444 nm Nd:YAG LASER: COMPARISON WITH THE 1,064 nm Nd:YAG LASER

Kwan Chul Tark, Ji Eun Jung, and Seung Yong Song

Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea

Background and Objectives: Recently developed laser lipolysis systems have been disappointing because they require more time to remove the same amount of fat than other liposuction methods. A new Nd:YAG laser has been introduced that uses the 1,444 nm wavelength, better absorbed by fat.

Study Design/Materials and Methods: This study consisted of two protocols. The first protocol was an in vivo minipig model. Four 10 x 10 cm areas were treated on the back of the first minipig. Using the same total energy and power settings (5,000 J, 8 W), both the 1,064 nm and 1,444 nm lasers were used to irradiate the two cephalic areas. The two caudal areas were irradiated with both lasers, using the maximum power settings (12 W with the 1,064 nm laser, 8 W with the 1,444 nm laser). Another minipig was administered a preoperative injection of tumescent solution and treated with the same condition. Measurements of fat volume with computed tomography and histological exams were conducted. The second experiment involved in vitro human fat. Equal amounts of human fat, harvested by liposuction, were put into test tubes and irradiated with 1,064 nm and 1,444 nm lasers. Oil production was measured from each test tube.

Results: A marked reduction in fat volume and more oil vacuoles and giant cells in histology were identified with the 1,444 nm wavelength compared to the 1,064 nm wavelength. Human fat in the in vitro experiments also revealed more oil production following the use of the 1,444 nm laser.

Conclusions: The 1,444 nm Nd:YAG laser showed a greater lipolytic effect compared to the 1,064 nm Nd:YAG laser in in vivo minipig and in vitro human fat experiments. To achieve a full understanding of the effects of 1,444 nm Nd:YAG laser lipolysis on the human body, in vivo experimentation will be necessary.
COMPREHENSIVE HISTOLOGIC ANALYSIS OF INTERSTITIAL LIPOLYSIS WITH THE 1444 nm WAVELENGTH DURING A 3-MONTH FOLLOW-UP

So Dug Lim, Jong-In Youn, Won-Serk Kim, Il-Hwan Kim, Tae Sook Hwang, Hye Seung Han, and Un-Cheol Yeo

1: Department of Pathology, Konkuk University School of Medicine and Konkuk University Medical Center; 2: Department of Biomedical Engineering, Catholic University of Daegu; 3: Department of Dermatology, School of Medicine Sungkyunkwan University; 4: Department of Dermatology College of Medicine, Korea University; and 5: S&U Dermatologic Clinic, Seoul, Republic of Korea

A number of near-infrared wavelengths have been proposed and studied for laser lipolysis, but the histologic evaluation of tissue response to laser lipolysis during long-term follow-up has been lacking. A 1444 nm Nd:YAG laser with better absorption in both fat and water has recently attracted attention. The present study was designed to investigate the comprehensive histopathology of 1444 nm Nd:YAG laser-assisted lipolysis at different energy levels during a 3-month follow-up. Laser lipolysis was performed on porcine fat tissue in vivo using a 1444 nm Nd:YAG laser (AccuSculpt®, Lutronic Corporation, Ilsan, Republic of Korea) and the total energies delivered interstitially to 10x10 cm areas were 750 J, 1500 J, 2250 J, 3000 J, 3750 J, 4500 J, and 5250 J. Biopsy samples were taken and histologically analyzed immediately after biopsy and at 1, 2, 4, and 12 weeks postoperatively. With a fluence setting above 3000 J/100 cm², inflammation was severe and remained by the 3-month follow-up, resulting in severe scarring of the fat tissue. Below this energy level, mild lobular inflammation in the early phase biopsy had resolved with no scarring by the 3-month follow-up. No histologic changes in the epidermis or dermal connective tissue were present. This study suggested that controlling the energy level is important for clinical applications of laser lipolysis with no significant complications.
ABLATION EFFICIENCY AND RELATIVE THERMAL CONFINEMENT MEASUREMENTS USING WAVELENGTHS 1,064, 1,320, AND 1,444 nm FOR LASER-ASSISTED LIPOLYSIS

Jong-In Youn¹ and J. David Holcomb²

¹: Department of Biomedical Engineering, College of Medical Science, Catholic University of Daegu, Gyeongbuk, South Korea; and ²: Holcomb Facial Plastic Surgery and Institute for Integrated Aesthetics, Sarasota, Florida, USA

Background and Aims: Laser-assisted lipolysis is routinely used for contouring the body and the neck while modifications of the technique have recently been advocated for facial contouring. In this study, wavelength-dependence measurements of laser lipolysis effect were performed using different lasers at 1,064, 1,320, and 1,444 nm wavelengths that are currently used clinically.

Materials and Methods: Fresh porcine skin with fatty tissue was used for the experiments with radiant exposure of 5-8W with the same parameters (beam diameter 600 µm, peak power 200 mJ, and pulse rate 40 Hz) for 1,064, 1,320 and 1,444 nm laser wavelengths. After laser irradiation, ablation crater depth and width and tissue mass loss were measured using spectral optical coherence tomography and a micro-analytical balance, respectively. In addition, thermal temporal monitoring was performed with a thermal imaging camera placed over ex vivo porcine fat tissue; temperature changes were recorded for each wavelength.

Results: This study demonstrated greatest ablation crater depth and width and mass removal in fatty tissue at the 1,444 nm wavelength followed by, in order, 1,320 and 1,064 nm. In the evaluation of heat distribution at different wavelengths, reduced heat diffusion was observed at 1,444 nm.

Conclusions: The ablation efficiency was found to be dependent upon wavelength, and the 1,444 nm wavelength was found to provide both the highest efficiency for fatty tissue ablation and the greatest thermal confinement.
FACELIFT ADJUNCTIVE TECHNIQUES: SKIN RESURFACING AND VOLUMETRIC CONTOURING

J. David Holcomb

Holcomb Facial Plastic Surgery and Institute for Integrated Aesthetics, Sarasota, Florida, USA

Background: The efficacy of even the best surgical facelifting techniques for the jowls and mandibular contouring is variable, and may provide only limited and temporary improvement of the midface contour. Commonly applied techniques for posterior cervicofacial rhytidectomy such as the superficial muscular aponeurotic system (SMAS) approach may have only minimal effect on the melolabial fold or may even accentuate it. The same approaches might also result in an unbalanced appearance unless the changes evoked by intrinsic and extrinsic aging are not taken into consideration.

Effects of Time: Time does not stand still, and improvements delivered by the surgical lifting techniques alone generally diminish over time as tissues undergo natural postoperative changes which are typically greater in older patients, those with severely photoaged skin or who tend to be heavier built, in smokers or those who have undergone significant weight loss.

Rationale for Adjunctive Surgery: The optimum approach would therefore appear to be ensure first of all absolute precision in performing the selected surgical techniques, and then to employ adjunctive nonsurgical or minimally invasive approaches which might offer a more natural appearance overall and which may be longer lasting. An interesting addition to the laser armamentarium has been the 1444 nm wavelength for interstitial laser-assisted lipolysis, and laser-assisted facial contouring (LAFC) with this system has attracted a lot of attention.

Benefits of LAFC: With LAFC, the descended fat masses associated with the nasolabial and melomental folds and jowling can be precisely removed, impossible with a surgical facelift which can only achieve an overall tightening effect. The same system can then be employed to achieve deep dermal heating for eventual skin tightening through collagen remodeling. The optical fiber-delivered 1444 nm energy also provides an ideal undermining technique to enhance the usual lifting approaches. Appropriate injectable fillers can be concomitantly used for any depressed areas, and fractional ablative resurfacing with the CO₂ or Er:YAG lasers can be used to rejuvenate photoaged skin so that the patient’s face is comprehensively treated from the deeper tissues to the surface.

Conclusions: The plastic surgeon must therefore be familiar with and take these new minimally-invasive adjunctive procedures into careful consideration in order to maximize and prolong the aesthetic effect of an excellently-performed facelift.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
LASER-ASSISTED FACIAL CONTOURING USING A THERMALLY CONFINED 1444-nm Nd:YAG LASER: A NEW PARADIGM FOR FACIAL SCULPTING AND REJUVENATION

J. David Holcomb,¹ Jon Turk,² Sung-Jong Baek,³ and Daniel E. Rousso⁴

Background and Aims: The micropulsed 1444-nm neodymium-doped lipolysis laser exhibits favorable characteristics for novel application in facial contouring. The study described herein is the first clinical report of laser-assisted facial contouring (LAFC).

Subjects and Methods: We retrospectively reviewed records of 478 LAFC patients (mean age 52) who underwent contouring of 1278 individual mid- and lower facial treatment sites over 18 months. Along with clinical assessment, study parameters evaluated among “original” and “modified” (where protocol updates included deep dermal soft tissue coagulation as an optional step) protocol groups included laser power, pulse energy, and total energy delivery as well as lipoaspirate volume at each treatment site.

Results: Mean power and pulse energy were similar (within 5%) and total -5 energy use was greater (70% higher for mid- and lower face) in the original protocol group. Lipoaspirate volume was similar for both groups for the midface (within 10%) but elevated w in the modified protocol group for the lower face (40% higher). Treatment complications were observed in 47 of 363 treatment sites (13%) in the original and in 12 of 915 treatment sites (1%) in the modified protocol group with the majority (63%) of the complications comprising over- versus undercorrections of desired tissue contour. Clinical efficacy varied with improvements of mid- and/or lower facial contour ranging from marginal to subtle to very apparent.

Conclusions: LAFC as detailed herein is a novel treatment modality that enables selective soft tissue removal for greater precision in three-dimensional contouring of the face. Protocol modifications based on laboratory and observed tissue photothermodynamics have improved LAFC safety.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
PRELIMINARY EXPERIENCE IN FACIAL AND BODY CONTOURING WITH 1444 nm MICROPULSED Nd:YAG LASER-ASSISTED LIPOLYSIS: A REVIEW OF 24 CASES

Young Choon Jung
Hershe Plastic Surgery Clinic, Seoul, South Korea

Background and Aims: Near-infrared laser-assisted lipolysis has claimed attention recently as a fast, safe and effective way to remove unwanted fat from various areas of the body. Removal of fat from the face has however proved more difficult. A novel 1444 nm line of the micropulsed Nd:YAG has recently been developed, offering superior duality of absorption in both fat and water. The present preliminary study was designed to assess the efficacy of the 1444 nm wavelength in facial and body contouring.

Subjects and Methods: Twenty-four informed and consenting female patients (ages ranging from 23 yr to 59 yr, mean age 32.38 ± 7.26 yrs) were recruited into the study. The laser used was a micropulsed 1444 nm Nd:YAG system. Following tumescent anesthesia, the tip of the optical fiber was placed in the subcutaneous fat via a cannula inserted through a small puncture wound, and lasing was commenced while the tissue over the end of the optical fiber was continuously palpated to check for excessive heat formation. Cold compresses were applied post-lasing. Patients were followed for at least 2 months with clinical photography at baseline, immediately post-treatment and at subsequent assessment points.

Results: All patients successfully completed the study. Patient subjective satisfaction was high, and an objective clinician assessment from the clinical photography showed good efficacy. There were no major adverse side effects. Minor side effects were transitory, all resolved spontaneously and good results were maintained during a 2-3 month follow-up.

Conclusions: The present study showed high efficacy for the micropulsed Nd:YAG laser at 1444 nm for laser-assisted lipolysis of both body and facial areas, with no adverse side effects and virtually no downtime. The high absorption rate of 1444 nm in both fat and water, coupled with the 100 μs pulse, was believed to contribute highly to the success of the study and the satisfaction of the patients. Further larger studies are warranted.
TREATMENT OF LIPOMAS USING A SUBDERMAL 1,444-nm MICROPULSED NEODYMIUM-DOPED YTTRIUM ALUMINUM GARNET LASER

Soo Hyun Lee,1 Jin Young Jung,2 Mi Ryung Roh3 and Kee Yang Chung3

1: Department of Dermatology and Cutaneous Biology, Research Institute Yonsei University College of Medicine; 2: Department of Dermatology Kwandong University College of Medicine; and 3: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine Seoul, Korea

Background: Lipomas are often removed because of aesthetic concerns or discomfort secondary to local structure compression, but scars and the potential for prolonged recovery times are known complications of most surgical modalities. We report herein on an effective, simple, safe method for the treatment of lipomas using a micropulsed 1,444-nm Nd:YAG laser applied interstitially through an optical fiber.

Subjects and Methods: Three female patients of Korean descent (aged 19, 38, and 48) were diagnosed with ultrasound as having lipomas on their backs. Following tumescent anesthesia, Subjects were treated in a single session of micropulsed subdermal 1,444-nm Nd:YAG laser energy (pulse rate 30 Hz, pulse energy 200 mJ, pulse width 100 μs, power 6 W) via a 600 m optical fiber through a microcannula. The total accumulated energy used in each case ranged from 1,100 to 4,200 J/cm² determined by the lipoma size. After treatment, aspiration of lipid was performed.

Results: All 3 patients were satisfied with the small scars from the cannula entry point, which were no longer visible a few months after the laser treatment. Patients returned for follow-up examination and ultrasonography periodically for 2 to 6 months after the laser surgery. In all cases, reduction or complete disappearance of the lipoma was observed at the 6-month follow-up, and no infections, episodes of severe bleeding, or any other serious adverse effects were reported.

Conclusions: Our findings in these three patients showed that a single treatment using the 1,444-nm Nd:YAG laser resulted in complete or near-complete lipoma resolution, and enabled the use of a finer cannula for the liposuction. We anticipate that the 1,444-nm wavelength laser may achieve more-effective lipolysis, given its high fat and water affinity.
TREATMENT OF WRIST GANGLION USING Nd:YAG LASER

Eugene Kim,¹ Se-Jin Park,¹ Ji-Woong Yoon,¹ Won-Serk Kim,² Jun O Yoon³ and Shin-suk Park⁴

1: Department of Orthopedic Surgery; and 2: Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine; 3: Department of Orthopedic Surgery, Asan Medical Center, Ulsan University College of Medicine; and 4: Department of Mechanical Engineering, Korea University, Seoul, Korea

Purpose: We evaluated the results of treatment for a ganglion with catheterized Nd: YAG laser assisted arthrotomy.

Materials and Methods: Twenty-five patients with a ganglion underwent laser assisted arthrotomy. The first procedure was the puncturing and aspiration of the ganglion using an 18 G needle under local anesthesia. The joint capsule and ligament near the origin of the ganglion were cauterized using a catheterized laser instrument (ACCUSCULPT™, Lutronic Inc.). The patients was observed clinically and evaluated by ultrasonography.

Results: The average period of follow-up was 12.3 months. Among the 25 patients presented during follow-up period, 22 patients (88%) had no recurrence. Two patients had partial recurrence and 1 patient had complete recurrence.

Conclusions: Catheterized Nd:YAG laser assisted arthrotomy is considered to be an effective non-invasive method with a relatively low recurrence rate for the treatment of wrist ganglions.
SUCCESSFUL TREATMENT OF RECURRENT DIGITAL MUCOID CYSTS USING A 1,444-nm NEODYMIUM-DOPED YTTRIUM ALUMINUM GARNET LASER

Jong Hoon Kim, Ji Hun Park, Hyunjoong Jee, and Sang Ho Oh

Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea

Background and Aims: Digital mucoid cysts (DMCs), also known as ganglions or synovial cysts, are common tumors of the distal interphalangeal (DIP) joints. DMCs can cause pain, cosmetic disfigurement, and nail deformities. Recently, the 1444 nm Nd:YAG laser has attracted attention in laser-assisted lipolysis, with high efficacy due to the high duality of absorption in both water and fat. We report herein on two cases of relapsing DMCs successfully treated using the 1444 nm laser, without recurrence.

Case Reports and Methods: Two patients, a 65-year-old man and a 48-year-old woman, had pathologically-confirmed periungual DMCs. Previous treatments with cryotherapy in combination with CO₂ laser or on its own, had been unsuccessful. Treatment was performed interstitially with a 600 moptical fiber, delivering 100 s pulses of 1444 nm laser energy (6 W and 4 W, total energy 72 J/cm² and 44 J/cm² for the male and female, respectively).

Results: Following compress dressings for 1 week, no recurrence was seen in either patient 6 months post-treatment, and at 9 months disappearance of the nail deformity caused by the DMC was observed.

Conclusions: Our cases suggest that the micropulsed interstitial 1444 nm laser could serve an effective and easy treatment option for DMCs and offers clear advantages over other modalities with regard to recurrence, but further large studies are necessary to prove the effectiveness of this novel laser on DMCs.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
ANTIFUNGAL EFFECTS OF A 1,444-nm NEODYMIUM:YTTRIUM-ALUMINIUM-GARNET LASER ON ONYCHOMYCOSIS: A PILOT STUDY

Min Ju Choi,1 Zhenlong Zheng,1,2 Boncheol Goo,3 Sung Bin Cho1

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul; 2: Department of Dermatology, Yanbian University Hospital, Yanji, China; and 3: Clinic L, Goyang, Korea

Background and Aims: Investigations of laser- or light-assisted antibacterial and antifungal treatments have been introduced. In the present study, we investigated the antifungal activities of 1,444-nm Nd:YAG lasers against onychomycosis by microbiologic analysis and scanning electron microscopy.

Materials and Methods: Scraped toenails from 20 participants with mycologically-confirmed onychomycosis were prepared on polystyrene weighing dishes and treated with a 1,444-nm Nd:YAG laser. The samples were analyzed for the presence of colony-forming units (CFUs) and scanning electron microscopy was performed using a toenail treated with the 1,444-nm Nd:YAG laser.

Results: The mean reduction rate achieved by treatment with a total energy of 300 J was 75.9% (range: 33.3-100%), and by treatment with 450 J was 85.5% (range: 66.7-100%). However, the difference in CFU reduction rates between the laser settings of 300 J and 450 J was not significant. Analysis by scanning electron microscope revealed numerous disintegrated spores on the lower portions of the nail plate treated with the 1,444-nm laser, while the upper portion of the nail plate presented only a few small and greatly disintegrated fungal spores.

Conclusions: Our results suggest that a Nd:YAG laser with a wavelength of 1,444-nm has antifungal effects on onychomycosis. However, further investigations should be performed to determine the long-term clinical and microbiological effects of this treatment.
SUCCESSFUL TREATMENT OF MULTIPLE CUTANEOUS NEUROFIBROMAS USING A COMBINATION OF SHAVE EXCISION AND LASER PHOTOTHERMOCOAGULATION WITH A 1,444-nm NEODYMIUM-DOPED YTTRIUM ALUMINUM GARNET LASER

Hee Joo Kim, Kyung Goo Lee, Sang Min Yi, Jae Hwan Kim, and Il-Hwan Kim

Department of Dermatology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan, Korea

Background: Neurofibromatosis type 1 (NF-1) is an autosomal-dominant disorder of chromosome 17q11.2. Multiple cutaneous neurofibromas, one of the most characteristic clinical features of NF-1, are mainly a cosmetic problem, but are a major source of morbidity and psychological concern. Surgical excision is time consuming and painful. The present study preliminarily evaluated a novel interstitial 1444 nm fiber-based laser in the treatment of neurofibromas.

Case Report and Methods: A 35-year-old Asian male with a 20-year history of literally hundreds of neurofibromas presented to have removal of as many neurofibromas as possible without inconvenience or scarring. Because of the profusion of lesions he suffered from psychological problems, and was unable to wear short-sleeved shirts or shorts. He underwent treatment with the 1444 nm laser, (150 mJ/pulse, 20 Hz, 3W, 100 μs) delivered interstitially via a 600 μm optical fiber following shave excision of the protruding mass. Fifteen lesions were treated much more rapidly with this modality compared with surgical excision.

Results: The patient was happy with the results both intraprocedural and 7 months post-operatively. He rated the 1444 nm system against conventional surgery with a total preference score of 9 versus 6, respectively, out of 10. At 7 months after treatment, histology revealed the previous spindle neural cells had been replaced with normal collagen fibers, and the areas treated with the 1444 nm laser showed flattened skin with no visible recurrence or scarring.

Conclusions: The interstitial 1444 nm laser offers a new, speedy and less-invasive approach to the treatment of multiple neurofibromas. The good result achieved in this patient is believed to be due to the excellent absorption at this wavelength in water and the controlled heating effect due to the high peak power and short pulse widths. Further controlled studies with much larger patient populations are definitely warranted.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
A CASE REPORT OF MULTIPLE ECCRINE HYDROCYSTOMAS SUCCESSFULLY TREATED WITH SUBDERMAL 1444-nm MICROPULSED NEODYMIUM-DOPED YTTRIUM ALUMINUM GARNET LASER

Soo Hyun Lee,1 Kee Yang Chung1 and Jin Young Jung2

1: Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine; and 2: Yeouido Oracle Cosmetic Dermatosurgery Clinic, Seoul, Korea

Background and aims: Eccrine hydrocystomas (EHs) are rare, benign cystic tumors of the eccrine sweat glands. There have been previous reports of EHs treated with laser, namely the long-pulsed dye and carbon dioxide lasers. A new 1444 nm 100 µs Nd:YAG laser was recently developed and has attracted a great deal of interest in laser assisted lipolysis, including facial contouring. We report herein on a case of multiple EHs (MEHs) that responded well to micropulsed interstitial 1444 nm laser treatment.

Subject and Methods: A 66-year-old Korean female presented with a 12-year history of multiple asymptomatic lesions on her face which appeared especially in the summer. The were histopathologically diagnosed as EHs. The patient was treated with a single session of the micropulsed 1444 nm laser (100 µs pulse width, 200 mJ pulse energy, repetition rate 30 Hz, 6 W of power) delivered interstitially to the lesions with a 600 µm optical fiber. The bilateral total fluence was 240 J/cm².

Results: At one week post-treatment, the entry point scars were invisible, and the patient was very happy with the result. Four weeks post-treatment, even though it was during the summer, gross observation revealed almost total clearance with no side effects. No recurrence was noted in a six-month follow-up period.

Conclusions: A single session of the micropulsed 1444 nm laser could possibly achieve a more effective clearance of MEHs than conventional treatment options. Scarring was nonexistent and recurrence was not seen for 6 months. The good effect was probably due to the high absorption rate of this wavelength in water, coupled with the containment of photothermal damage at the very tip of the fiber, achieved with high peak powers and short micropulses. Further long-term evaluation including large population studies will be needed to determine whether the favorable clinical outcome observed in the present case will apply to the general population with EHs, and if it is permanent.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
THE MEASUREMENT OF OPTIMAL POWER DISTANCE IN LEDs

Mi Kyung Park,1 Beom Joon Kim,1 Myeung Nam Kim,1 Seog Kyun Mun,2 Hyuck Ki Hong,3 Yeon Shik Choi,3 and Young Chang Jo3

Departments of 1: Dermatology, 2: Otorhinolaringology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul; and 3: Medical IT Convergence Research Center, Korea Electronics Technology Institute, Seoul, Korea

Background: The use of light technology in dermatology has grown rapidly over the last decade, with many developments in its use for the treatment of a wide variety of skin conditions from non-melanoma skin cancers to facial resurfacing for photodamaged skin. Light-emitting diodes (LEDs) have attracted much attention in medical fields.

Objective: (1) To assess the optimal distance of 630 nm LEDs [OmniLux®, (Photo Therapeutics Ltd, Tamworth, UK)] and 830 nm LEDs [HEALITE®] (Lutronic, Korea) for maximum power as determined by a power meter and (2) to apply the theory to practical use.

Methods: Two separate hinged planar light emitting diode arrays were studied: 1) the Omnilux Revive™ which delivers non-coherent red light at a wavelength of 633±3 nm and 2) the Lutronic HEALITE®, which delivers non-coherent light at a wavelength of 830±5 nm. An X93 power meter (Gigahertz-Optik, Germany) was placed against a black background in order to reduce the amount of reflected light. We measured the LED powers over a range of 3-25 cm in 1 cm increments.

Results: On the irradiation side of the LED, power increases according to the mass effect of the radiation angle. However, at a certain distance, the power decline effect predominated over the amassment effect. In this respect, the LED light was estimated to be emitted in a reverse V shape. The proper irradiation distance for use in medical fields can thus be determined.

Conclusion: The proper irradiation distance of LED will be useful and the proper use of LED depending on the shape of the target will be performed in many medical fields.
IS LIGHT-EMITTING DIODE PHOTOTHERAPY (LED-LLLT) REALLY EFFECTIVE?

Won-Serk Kim¹ and R Glen Calderhead²

1: Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul; and 2: Clinical Institute for Photomedicine and Photosurgery Research, Goyang, South Korea

Background: Low level light therapy (LLLT) has attracted attention in many clinical fields with a new generation of light-emitting diodes (LEDs) which can irradiate large targets. To pain control, the first main application of LLLT, have been added LED-LLLT in the accelerated healing of wounds, both traumatic and iatrogenic, inflammatory acne and the patient-driven application of skin rejuvenation.

Rationale and Applications: The rationale behind LED-LLLT is underpinned by the reported efficacy of LED-LLLT at a cellular and subcellular level, particularly for the 633 nm and 830 nm wavelengths, and evidence for this is presented. Improved blood flow and neovascularization are associated with 830 nm. A large variety of cytokines, chemokines and macromolecules can be induced by LED phototherapy. Among the clinical applications, non-healing wounds can be healed through restoring the collagenesis/collagenase imbalance in such examples, and 'normal' wounds heal faster and better. Pain, including postoperative pain, postoperative edema and many types of inflammation can be significantly reduced.

Experimental and Clinical Evidence: Some personal examples of evidence are offered by the first author, including controlled animal models demonstrating the systemic effect of 830 nm LED-LLLT on wound healing and on induced inflammation. Human patients are presented to illustrate the efficacy of LED phototherapy on treatment-resistant inflammatory disorders.

Conclusions: Provided an LED phototherapy system has the correct wavelength for the target cells, delivers an appropriate power density and an adequate energy density, then it will be at least partly, if not significantly, effective. The use of LED-LLLT as an adjunct to conventional surgical or nonsurgical indications is an even more exciting prospect. LED-LLLT is here to stay.
THE SYSTEMIC EFFECT OF 830-nm LED PHOTOTHERAPY ON THE WOUND HEALING OF BURN INJURIES: A CONTROLLED STUDY IN MOUSE AND RAT MODELS

Ga Young Lee and Won Serk Kim

Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Dermatology, Seoul, Republic of Korea

Background: The present controlled study assessed the systemic effect of 830-nm LED phototherapy in rodent models.

Materials and Methods: Two HR-1 hairless mice and 3 HWY/Slc hairless rats were divided into two groups: the treatment group (Tx Group, one mouse, two rats) and the control group (Con Group, one mouse, one rat). All animals received an identical 12 mm × 12 mm control burn over three sites on the dorsum with a fractional ablative CO₂ laser. Wounds were protected with a film-type dressing. The abdomen of the Tx Group subjects was irradiated with an 830-nm LED array immediately post CO₂ treatment and then at 1, 5 and 6 days post laser irradiation. Wound healing was assessed macroscopically from the clinical photography.

Results: At the 2-day post-laser assessment, the healing process in the wounds in the Tx Group was already apparent compared with the Con Group. At the final evaluation (post-burn day 7), no site on the Con Group (six wounds) showed 100% healing, recovery was over 70% in four and lower than 50% in two sites. Of the nine Tx Group sites, 100% recovery was seen in three sites, over 70% in five sites and one wound was exacerbated through trauma.

Conclusions: LED phototherapy on the abdomen produced faster wound healing of the uniform burn wounds than in animals with the same burn wounds that did not receive LED phototherapy, strongly suggesting the systemic effect of LED phototherapy.
Background and Aims: Although prurigo pigmentosa (PP) is a rare inflammatory dermatitis of unknown etiology, it is comparatively common in Korean and Japanese women aged approximately 20-40 years. It is characterized by periods of exacerbation and remission, with recurrent eruptions of extremely pruritic erythematous macules and papules that resolve leaving reticulate hyperpigmentation. We describe herein two young women with PP who were successfully treated with Jessner’s peel and 830-nm light-emitting diode (LED) phototherapy.

Patients and Methods: Patient 1 was a 17-year-old girl with an intractable and severe itchy rash of 4 weeks’ duration with lesions on her chest and back, and patient 2 was a 22-year-old Korean female with a 4-week history of similar intensely pruritic lesions on her upper back, posterior neck and chest. Both patients were on a weight-control diet. Both patients were treated with oral minocycline, antihistamine and topical corticosteroids, and the pruritis and erythema improved. After 2 weeks in patient 1 the scaly patches became more severe with hyperpigmentation, and after 1 week in patient 2, reticular hyperpigmentation appeared. Both patients were started on weekly treatments with a superficial chemical peel (Jessner’s solution) followed immediately with LED phototherapy (HEALITE™, Lutronic Corp, Ilsan, Korea), 830 nm, continuous wave, 60 J/cm² over 20 min.

Results: In patient 1, after 1 month of weekly treatments her reticular pigmentation had cleared, and the pigmentation did not recur during a subsequent 10-month follow-up, although the lesions did recur. In the case of patient 2, after 6 weekly sessions, her pigmentation had cleared (Fig. 1d). No recurrence was observed within the following 10 months.

Conclusions: Most current treatments of PP are focused on the early stage, with no previous reports of the treatment of hyperpigmented lesions. We found that treatment with Jessner’s peel and 830 nm LED phototherapy effectively reduced the PIH sequelae and should therefore be considered a good noninvasive treatment option.

(Abstracted by Medical and Scientific Affairs, Lutronic Corporation)
Background and aims: Acne remains a severe problem for both patients and clinicians. Various approaches using photosurgery and phototherapy have been reported with varying degrees of success and robustness of results. An improved intense pulsed light (IPL) system has become available with interesting beam characteristic which might improve IPL treatment of inflammatory acne in the Asian skin, Fitzpatrick type III/IV.

Subjects and Methods: The 18 study subjects comprised 15 females and 3 males with active mild to moderately severe inflammatory acne (mean age 25.3 ± 7.70 yr, range 17-47 yr, Burton scale 1-4, all Fitzpatrick type III Asian skin). They were treated once (8 subjects) or twice (10 subjects) with an IPL system offering both square pulse and time resolved spectral distribution technologies (420 nm cut-off filter, 30 ms pulse, 8-12 J/cm², 2-3 passes). Clinical photography was taken at baseline and at 4 weeks after the final treatment. Percentage of acne clearance was assessed by an independent dermatological panel and graded from zero to 5, 5 being total clearance.

Results: All subjects completed the study. Post-treatment side effects were mild and transient, with virtually no downtime or postinflammatory hyperpigmentation (PIH) experienced by any subject. All subjects had some improvement and no exacerbation was seen in any subject. Clearance was evaluated by the panel as grade 4 in 5 subjects, grade 3 in 8, grade 2 in 4 and grade 1 in 1, so that 14 of 18 subjects (78%) had clearance of at least 60%. Patient evaluation was in general slightly better than that of the panel.

Conclusions: The special beam characteristics of the IPL system used in the present preliminary study achieved good to very good results in the treatment of acne in the Fitzpatrick type III Asian skin without PIH induction. The results suggested that acne treatment in the Asian skin using this system is both safe and effective, and merits larger population studies to further optimize parameters and standardize top-up treatments.
A FRACTIONAL 2,940 nm SHORT-PULSED, ERBIUM-DOPED YTTRIUM ALUMINIUM GARNET LASER IS EFFECTIVE AND MINIMALLY INVASIVE FOR THE TREATMENT OF PHOTODAMAGED SKIN IN ASIANS

Hyung Min Lee¹, Sik Haw¹, Jeong Eun Kim¹, Chong Hyun Won¹, Mi Woo Lee¹, Jee Ho Choi¹, Sung Eun Chang¹, Youn Jin Kim², Boncheol Leo Goo³

¹: Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 2: Pureen Skin Clinic, Seoul, and 3: Clinique L, Goyang, Korea

Background: Although ablative fractional laser for the facial photodamaged skin was effective and safe, there have been only limited reports regarding the efficacy and safety of fractional Er:YAG laser treatments for photodamaged facial skin in Asians.

Objective: Our objective was to assess the efficacy and safety of the Er:YAG laser (2,940 nm) using the “ablative” fractional resurfacing mode to treat photodamaged facial skin.

Methods: A total of 29 Korean patients were treated for photodamaged facial skin using a fractional Er:YAG laser. The number of treatment was mean 2.3 sessions at two-week intervals. Independent investigators assessed the efficacy using standardized photographs. The patients’ satisfaction rate was also evaluated.

Results: For dyspigmentation, 62.5% of the treated patients showed improvement greater than 26%. Regarding wrinkles, 50% of the treated patients showed improvement greater than 26%. All patients showed various degrees of improvement in skin laxity. Assessing the overall features, 62.5% of the study subjects showed improvement greater than 26%, and most of them (91.7%) reported that their subjective satisfaction rate was above “slight satisfaction”. Downtime accounted for approximately one week in most patients.

Conclusions: A fractional Er:YAG laser can deliver an effective and minimally invasive treatment for photodamaged facial skin in Asians.
EFFECTS OF RESOLUTION OF INFLAMMATION FOR LOW-POWER CO₂ LASER TREATMENT IN GINGIVITIS PATIENTS

Hyun-Jong Song, Byung-Ock Kim, Hyun-Seon Jang
Department of Periodontology, School of dentistry, Chosun University, South Korea

Purpose: In this study, we compared low-power CO₂ laser treatment to ultrasonic scaling, which is generally approved as a power-driven mechanical instrumentation, and evaluated both of these treatments regarding their clinical effectiveness and change in the volume of in GCF.

Materials and methods: Twenty patients who had gingivitis were selected to participate in the study. None of the patients has any systemic problems. Randomly selected, one quartile received ultrasonic scaling only, another quartile received ultrasonic scaling and CO₂ laser irradiation, the other quartile received CO₂ laser irradiation only. The final quartile served as the control group. Clinical parameters were measured at baseline, 1 week, 2 weeks, 4 weeks and 8 weeks.

Results: Pocket probing depth and clinical attachment level were not changed during the study period. Gingival index of all groups improved after treatment. At 1 week after treatment, the gingival index of the ultrasonic scaling group was significantly different compared to the control group. At 2 weeks after treatment, the gingival index of all experimental groups were significantly different compared to the control group. At 4 and 8 weeks after treatment, the gingival index of all group had increased, but the experimental group was lower than the control group. Sulcus bleeding index was similar to the results of the gingival index. At 1 week after treatment, all experimental groups were significantly different compared to control group and this was maintained throughout the study. At 2 weeks after treatment, sulcus bleeding index of all group was lowest during the study. Gingival crevicular fluid was measured with a Periotron 8000 (Oralflow, Inc. USA). At baseline, all groups showed a moderately severe condition. At 1 week after treatment, the laser treatment group demonstrated the greatest reduction in the quantity of gingival crevicular fluid, although gingival crevicular fluid was somewhat reduced in the other groups. At 2 weeks after treatment, all groups were in a healthy state. At 4 and 8 weeks after treatment, all groups showed recurrence of inflammation, and the control group was the most significantly increased.

Conclusions: This study showed that the effects of CO₂ laser treatment were similar to conventional ultrasonic scaling but with a longer latency period than plaque control only. These results suggest the potential application of CO₂ laser treatment for altered periodontal therapy.
IN VITRO STUDY OF THE SOFT TISSUE EFFECTS OF MICROSECOND-PULSED CO₂ LASER PARAMETERS DURING SOFT TISSUE INCISION AND SULCULAR DEBRIDEment

Ram M. Vaderhobli, Joel M. White, Christine Lee, Sunita Ho, and Richard Jordan

Department of Preventive and Restorative Dental Sciences, Department of Oral Facial Sciences, University of California San Francisco (UCSF), San Francisco, California, USA

Background and Objectives: Carbon dioxide (CO₂) lasers are an important part of dental treatment. Advances in laser technology have produced microsecond pulse durations and small beam sizes. The histological effects on porcine intraoral soft tissue with a range of microsecond-pulsed CO₂ laser parameters used for incision and sulcular debridement were evaluated in vitro and compared with historical histologic data.

Study Design/Materials and Methods: Fresh pig mandibles were used as the targets for incision and sulcular debridement using a microsecond-pulsed CO₂ laser, wavelength at 10,600 nm, articulated arm delivered, non-contact with spot size 200 μm, 500 μm, and 1 mm, and focal distance of 1 mm. For sulcular debridement, epithelium within a periodontal pocket (6 mm x 6 mm) was removed. Laser parameters for incision were from 30 Hz, 350 microseconds, 28 mJ and energy density of 143 J/cm² to 90 Hz, 1,000 microseconds, 60 mJ, and 1,911 J/cm². Width and depth of tissue removed, as well as coagulation effects of the tissue treated were measured. These were compared to a historical histologic database. Laser-treated surfaces were observed qualitatively using scanning electron microscopy (SEM).

Results: All laser parameters studied were able to reach the defined simulation objectives in reasonable amounts of time, less than a minute for incision and <20 seconds for sulcular debridement. The depth of the cut was significantly greater than the historical 95% confidence interval, but equivalent for width, lateral, and deep coagulation to the historical database. Sulcular debridement was achieved with minimal coagulation, <100 mm. SEM analysis did not identify any alteration to enamel, dentin, or bone during sulcular debridement.

Conclusion: The treatment objectives of incision and sulcular debridement were achieved with minimal lateral and deep coagulation in reasonable amount of time. Microsecond-pulsed CO₂ lasers can be safely and effectively used for incision and sulcular debridement.
SCREENING OF CO₂ LASER (10.6 μm) PARAMETERS FOR PREVENTION OF ENAMEL EROSION

Marcella Esteves-Oliveira,¹ Hao Yu,²,³ Carlos de Paula Eduardo,⁴ Jörg Meister,⁵ Friedrich Lampert,¹ Thomas Attin,² and Annette Wiegand²

1: Department of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, RWTH Aachen University, Aachen, Germany; 2: Clinic for Preventive Dentistry, Periodontology and Cariology, University of Zurich, Zurich, Switzerland; 3: Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; 4: Special Laboratory of Lasers in Dentistry (LELO), Department of Restorative Dentistry School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil; and 5: Department of Periodontology, Conservative and Preventive Dentistry, Bonn University Dental Faculty, Bonn, Germany

Background data: A new clinical CO₂ laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market.

Objective: The aim of this study was to screen CO₂ laser (10.6 μm) parameters to increase enamel resistance to a continuous-flow erosive challenge.

Methods: Different laser parameters were tested in 12 groups (n=20) with varying fluences from 0.1 to 0.9 J/cm², pulse durations from 80 to 400 μs and repetition rates from 180 to 700 Hz. Non-lased samples (n=30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 μL/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n=3). Data were statistically analyzed with a one-way ANOVA (p<0.05) and Dunnett’s post-hoc tests.

Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm² (200 μs) at 450 Hz. Short-time reduction of calcium loss (equal to or less than 1.5 min) could be also achieved by irradiation with 0.7 J/cm² (300 μs) at 200 and 300 Hz. Both parameters revealed surface modification.

Conclusions: A set of CO₂ laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use.
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahn, CH</td>
<td>16</td>
</tr>
<tr>
<td>Ahn, JY</td>
<td>27</td>
</tr>
<tr>
<td>Akbari, Z</td>
<td>41</td>
</tr>
<tr>
<td>Attin, T</td>
<td>69</td>
</tr>
<tr>
<td>Davari, P</td>
<td>1</td>
</tr>
<tr>
<td>Dietrich, N</td>
<td>38</td>
</tr>
<tr>
<td>Draelos, ZD</td>
<td>9</td>
</tr>
<tr>
<td>Baek, SJ</td>
<td>53</td>
</tr>
<tr>
<td>Bak, HN</td>
<td>2</td>
</tr>
<tr>
<td>Bang, DS</td>
<td>18,32</td>
</tr>
<tr>
<td>Barikbin, B</td>
<td>41</td>
</tr>
<tr>
<td>Beltraminelli, H</td>
<td>38</td>
</tr>
<tr>
<td>Calderhead, RG</td>
<td>17,62</td>
</tr>
<tr>
<td>Chang, HS</td>
<td>19</td>
</tr>
<tr>
<td>Chang, HS</td>
<td>33</td>
</tr>
<tr>
<td>Chang, SE</td>
<td>2,64,66</td>
</tr>
<tr>
<td>Cho, SB</td>
<td>15,18,20,25,31,32,39,44,58</td>
</tr>
<tr>
<td>Cho, SH</td>
<td>8,34</td>
</tr>
<tr>
<td>Chee, JH</td>
<td>21</td>
</tr>
<tr>
<td>Choi, EH</td>
<td>10</td>
</tr>
<tr>
<td>Choi, JH</td>
<td>2,66</td>
</tr>
<tr>
<td>Choi, JR</td>
<td>64</td>
</tr>
<tr>
<td>Choi, MJ</td>
<td>15,39,58</td>
</tr>
<tr>
<td>Choi, MJ</td>
<td>20</td>
</tr>
<tr>
<td>Choi, YJ</td>
<td>21,47</td>
</tr>
<tr>
<td>Choi, YS</td>
<td>61</td>
</tr>
<tr>
<td>Chun, SI</td>
<td>15,17</td>
</tr>
<tr>
<td>Chung, HJ</td>
<td>12,13,14,25</td>
</tr>
<tr>
<td>Chung, KY</td>
<td>12,13,14,25,34,36,55,60</td>
</tr>
<tr>
<td>Chung, WS</td>
<td>39</td>
</tr>
<tr>
<td>Chung, WY</td>
<td>34</td>
</tr>
<tr>
<td>Cummings, T</td>
<td>43</td>
</tr>
<tr>
<td>Gorouhi, F</td>
<td>1</td>
</tr>
<tr>
<td>Goo, BL</td>
<td>7,13,14,15,58,59,66</td>
</tr>
<tr>
<td>Han, HS</td>
<td>50</td>
</tr>
<tr>
<td>Han, SS</td>
<td>6</td>
</tr>
<tr>
<td>Han, TY</td>
<td>19</td>
</tr>
<tr>
<td>Hann, SK</td>
<td>46</td>
</tr>
<tr>
<td>Haw, S</td>
<td>66</td>
</tr>
<tr>
<td>Hejazi, S</td>
<td>41</td>
</tr>
<tr>
<td>Ho, S</td>
<td>68</td>
</tr>
<tr>
<td>Holcomb, JD</td>
<td>51,52,53</td>
</tr>
<tr>
<td>Hong, HK</td>
<td>61</td>
</tr>
<tr>
<td>Hong, JS</td>
<td>16</td>
</tr>
<tr>
<td>Hunziker, T</td>
<td>38</td>
</tr>
<tr>
<td>Husain, A</td>
<td>43</td>
</tr>
<tr>
<td>Kang, WH</td>
<td>23</td>
</tr>
<tr>
<td>Kang, HY</td>
<td>7</td>
</tr>
<tr>
<td>Kashani, MN</td>
<td>1</td>
</tr>
<tr>
<td>Kim, BJ</td>
<td>21,28,30,61</td>
</tr>
<tr>
<td>Kim, BO</td>
<td>67</td>
</tr>
<tr>
<td>Kim, CW</td>
<td>28</td>
</tr>
<tr>
<td>Kim, DH</td>
<td>11</td>
</tr>
<tr>
<td>Kim, EG</td>
<td>56</td>
</tr>
<tr>
<td>Kim, H</td>
<td>3</td>
</tr>
<tr>
<td>Kim, HS</td>
<td>11</td>
</tr>
<tr>
<td>Kim, H</td>
<td>24</td>
</tr>
<tr>
<td>Kim, IH</td>
<td>2,3,4,5,6,11,50,59</td>
</tr>
<tr>
<td>Kim, JE</td>
<td>66</td>
</tr>
<tr>
<td>Kim, JH</td>
<td>3,6,11,59</td>
</tr>
<tr>
<td>Kim, JJ</td>
<td>22,44,47</td>
</tr>
<tr>
<td>Kim, KJ</td>
<td>33</td>
</tr>
<tr>
<td>Jordan, R</td>
<td>68</td>
</tr>
<tr>
<td>Jung, JY</td>
<td>16</td>
</tr>
<tr>
<td>Jung, JE</td>
<td>49</td>
</tr>
<tr>
<td>Jung, JY</td>
<td>8,13,25,31,32,34,55,60</td>
</tr>
<tr>
<td>Jung, YC</td>
<td>54</td>
</tr>
<tr>
<td>Jang, HS</td>
<td>67</td>
</tr>
<tr>
<td>Jee, HJ</td>
<td>57</td>
</tr>
<tr>
<td>Jeong, JJ</td>
<td>34</td>
</tr>
<tr>
<td>Jeong, SY</td>
<td>2,4,6</td>
</tr>
<tr>
<td>Jo, YC</td>
<td>61</td>
</tr>
<tr>
<td>Jung, JY</td>
<td>32,34,55,60</td>
</tr>
<tr>
<td>Jang, HS</td>
<td>67</td>
</tr>
<tr>
<td>Jee, HJ</td>
<td>57</td>
</tr>
<tr>
<td>Jeong, JJ</td>
<td>34</td>
</tr>
<tr>
<td>Jeong, SY</td>
<td>2,4,6</td>
</tr>
<tr>
<td>Jo, YC</td>
<td>61</td>
</tr>
<tr>
<td>Jung, JY</td>
<td>8,13,25,31,32,34,55,60</td>
</tr>
<tr>
<td>Jung, YC</td>
<td>54</td>
</tr>
<tr>
<td>Jang, HS</td>
<td>67</td>
</tr>
<tr>
<td>Jee, HJ</td>
<td>57</td>
</tr>
<tr>
<td>Jeong, JJ</td>
<td>34</td>
</tr>
<tr>
<td>Jeong, SY</td>
<td>2,4,6</td>
</tr>
<tr>
<td>Jo, YC</td>
<td>61</td>
</tr>
<tr>
<td>Jung, JY</td>
<td>32,34,55,60</td>
</tr>
<tr>
<td>Jang, HS</td>
<td>67</td>
</tr>
<tr>
<td>Jee, HJ</td>
<td>57</td>
</tr>
<tr>
<td>Jeong, JJ</td>
<td>34</td>
</tr>
<tr>
<td>Jeong, SY</td>
<td>2,4,6</td>
</tr>
<tr>
<td>Jo, YC</td>
<td>61</td>
</tr>
<tr>
<td>Jung, JY</td>
<td>8,13,25,31,32,34,55,60</td>
</tr>
<tr>
<td>Jung, YC</td>
<td>54</td>
</tr>
</tbody>
</table>
Kim, KJ 21
Kim, MR 45
Kim, MN 21,28,30,61
Kim, NI 26
Kim, TG 22
Kim, WS 4,21,29,30,47,50,
 56,62,63
Kim, YH 33
Kim, YJ 23
Kim, YJ 66
Kim, YK 44
Kwon, HH 16
Kwon, YS 22

Lim, YY 30

Meister, J 69
Mohebbi, A 40
Mun, JY 6
Mun, SK 61

Nam, JH 47
Nam, KA 36
Nam, KH 34
Noh, SM 44

O’Daniel, TG 37
Oh, ES 64
Oh, SH 18,20,45,46,57
Oliveira, ME 69

Park, SJ 56
Park, SS 56
Park, WS 30
Park, YL 21
Park, YM 24
Pyo, WS 23

Rah, DK 36
Reddy, UP 42,43
Rho, NK 21
Richard, MJ 43
Roh, HJ 34
Roh, MR 12,13,14,33,36,55
Roussos, DE 53
Ryu, DJ 31,32

Saryazdi, S 40
Shin, JB 4
Shin, JU 25,36
Shin, JY 45,46
Shin, MK 26
Son, SJ 19
Song, HJ 67
Song, KY 30
Song, SY 49
Suh, DH 16
Suh, H 36

Tark, KC 49
Turk, J 53
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaderhobli, RM</td>
<td>68</td>
</tr>
<tr>
<td>White, JM</td>
<td>68</td>
</tr>
<tr>
<td>Wiegand, A</td>
<td>69</td>
</tr>
<tr>
<td>Won, CH</td>
<td>64, 66</td>
</tr>
<tr>
<td>Woodward, JA</td>
<td>42, 43</td>
</tr>
<tr>
<td>Yang, YJ</td>
<td>35, 47</td>
</tr>
<tr>
<td>Yeo, UC</td>
<td>4, 50</td>
</tr>
<tr>
<td>Yi, SM</td>
<td>59</td>
</tr>
<tr>
<td>Yoo, KH</td>
<td>28</td>
</tr>
<tr>
<td>Yoon, JO</td>
<td>56</td>
</tr>
<tr>
<td>Yoon, JW</td>
<td>56</td>
</tr>
<tr>
<td>Yoon, JY</td>
<td>16</td>
</tr>
<tr>
<td>Youn, JI</td>
<td>48, 50, 51</td>
</tr>
<tr>
<td>Yu, H</td>
<td>69</td>
</tr>
<tr>
<td>Zheng, ZL</td>
<td>15, 58</td>
</tr>
</tbody>
</table>
Our passion is to improve the lives of physicians and their patients by developing innovative solutions that are intuitive, versatile, efficacious and beneficial to society.